Equilibration, generalized equipartition, ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Equilibration, generalized equipartition, and diffusion in dynamical Lorentz gases
Auteur(s) :
De Bievre, Stephan [Auteur]
Quantitative methods for stochastic models in physics [MEPHYSTO]
Parris, Paul [Auteur]
Department of Physics
Quantitative methods for stochastic models in physics [MEPHYSTO]
Parris, Paul [Auteur]
Department of Physics
Titre de la revue :
Journal of Statistical Physics
Pagination :
356-385
Éditeur :
Springer Verlag
Date de publication :
2011
ISSN :
0022-4715
Mot(s)-clé(s) en anglais :
Thermal equilibrium
Equipartition
Diffusion
Equipartition
Diffusion
Discipline(s) HAL :
Mathématiques [math]/Physique mathématique [math-ph]
Physique [physics]/Matière Condensée [cond-mat]/Mécanique statistique [cond-mat.stat-mech]
Physique [physics]/Matière Condensée [cond-mat]/Mécanique statistique [cond-mat.stat-mech]
Résumé en anglais : [en]
We demonstrate approach to thermal equilibrium in the fully Hamiltonian evolution of a dynamical Lorentz gas, by which we mean an ensemble of particles moving through a $d$-dimensional array of fixed soft scatterers that ...
Lire la suite >We demonstrate approach to thermal equilibrium in the fully Hamiltonian evolution of a dynamical Lorentz gas, by which we mean an ensemble of particles moving through a $d$-dimensional array of fixed soft scatterers that each possess an internal harmonic or anharmonic degree of freedom to which moving particles locally couple. We analytically predict, and numerically confirm, that the momentum distribution of the moving particles approaches a Maxwell-Boltzmann distribution at a certain temperature $T$, provided that they are initially fast and the scatterers are in a sufficiently energetic but otherwise arbitrary stationary state of their free dynamics--they need not be in a state of thermal equilibrium. The temperature $T$ to which the particles equilibrate obeys a generalized equipartition relation, in which the associated thermal energy $k_B T$ is equal to an appropriately defined average of the scatterers' kinetic energy. In the equilibrated state, particle motion is diffusive.Lire moins >
Lire la suite >We demonstrate approach to thermal equilibrium in the fully Hamiltonian evolution of a dynamical Lorentz gas, by which we mean an ensemble of particles moving through a $d$-dimensional array of fixed soft scatterers that each possess an internal harmonic or anharmonic degree of freedom to which moving particles locally couple. We analytically predict, and numerically confirm, that the momentum distribution of the moving particles approaches a Maxwell-Boltzmann distribution at a certain temperature $T$, provided that they are initially fast and the scatterers are in a sufficiently energetic but otherwise arbitrary stationary state of their free dynamics--they need not be in a state of thermal equilibrium. The temperature $T$ to which the particles equilibrate obeys a generalized equipartition relation, in which the associated thermal energy $k_B T$ is equal to an appropriately defined average of the scatterers' kinetic energy. In the equilibrated state, particle motion is diffusive.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- equilibration101119b.pdf
- Accès libre
- Accéder au document
- 1009.3706
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- equilibration101119b.pdf
- Accès libre
- Accéder au document