Multifractal random walks with fractional ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Multifractal random walks with fractional Brownian motion via Malliavin calculus
Author(s) :
Fauth, Alexis [Auteur]
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Tudor, Ciprian [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Tudor, Ciprian [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
IEEE Transactions on Information Theory
Pages :
12
Publisher :
Institute of Electrical and Electronics Engineers
Publication date :
2014
ISSN :
0018-9448
HAL domain(s) :
Mathématiques [math]/Probabilités [math.PR]
English abstract : [en]
We introduce a Multifractal Random Walk (MRW) defined as a stochastic integral of an infinitely divisible noise with respect to a dependent fractional Brownian motion. Using the techniques of the Malliavin calculus, we ...
Show more >We introduce a Multifractal Random Walk (MRW) defined as a stochastic integral of an infinitely divisible noise with respect to a dependent fractional Brownian motion. Using the techniques of the Malliavin calculus, we study the existence of this object and its properties. We then propose a continuous time model in finance that captures the main properties observed in the empirical data, including the leverage effect. We illustrate our result by numerical simulations.Show less >
Show more >We introduce a Multifractal Random Walk (MRW) defined as a stochastic integral of an infinitely divisible noise with respect to a dependent fractional Brownian motion. Using the techniques of the Malliavin calculus, we study the existence of this object and its properties. We then propose a continuous time model in finance that captures the main properties observed in the empirical data, including the leverage effect. We illustrate our result by numerical simulations.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- mrw4.pdf
- Open access
- Access the document
- 1209.4717
- Open access
- Access the document