On 3D DDFV discretization of gradient and ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
On 3D DDFV discretization of gradient and divergence operators. I. Meshing, operators and discrete duality.
Auteur(s) :
Andreianov, Boris [Auteur]
Laboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
Bendahmane, Mostafa [Auteur]
Centro de Investigación en Ingeniería Matemática [Concepción] [CI²MA]
Institut de Mathématiques de Bordeaux [IMB]
Hubert, Florence [Auteur]
Laboratoire d'Analyse, Topologie, Probabilités [LATP]
Krell, Stella [Auteur]
Laboratoire Jean Alexandre Dieudonné [LJAD]
Laboratoire d'Analyse, Topologie, Probabilités [LATP]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Laboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
Bendahmane, Mostafa [Auteur]
Centro de Investigación en Ingeniería Matemática [Concepción] [CI²MA]
Institut de Mathématiques de Bordeaux [IMB]
Hubert, Florence [Auteur]
Laboratoire d'Analyse, Topologie, Probabilités [LATP]
Krell, Stella [Auteur]
Laboratoire Jean Alexandre Dieudonné [LJAD]
Laboratoire d'Analyse, Topologie, Probabilités [LATP]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Titre de la revue :
IMA Journal of Numerical Analysis
Pagination :
pp.1574-1603
Éditeur :
Oxford University Press (OUP)
Date de publication :
2012-10-12
ISSN :
0272-4979
Mot(s)-clé(s) en anglais :
Non-conformal mesh
General mesh
Consistency
Anisotropic elliptic problems
Finite volume approximation
Gradient reconstruction
Discrete gradient
Discrete duality
3D CeVe-DDFV
General mesh
Consistency
Anisotropic elliptic problems
Finite volume approximation
Gradient reconstruction
Discrete gradient
Discrete duality
3D CeVe-DDFV
Discipline(s) HAL :
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
This work is intended to provide a convenient tool for the mathematical analysis of a particular kind of finite volume approximation which can be used, for instance, in the context of nonlinear and/or anisotropic diffusion ...
Lire la suite >This work is intended to provide a convenient tool for the mathematical analysis of a particular kind of finite volume approximation which can be used, for instance, in the context of nonlinear and/or anisotropic diffusion operators in 3D. Following the approach developed by F. Hermeline and by K.~Domelevo and P. Omnès in 2D, we consider a ``double'' covering $\Tau$ of a three-dimensional domain by a rather general primal mesh and by a well-chosen ``dual'' mesh. The associated discrete divergence operator $\div^{\ptTau}$ is obtained by the standard finite volume approach. A simple and consistent discrete gradient operator $\grad^\ptTau$ is defined by local affine interpolation that takes into account the geometry of the double mesh. Under mild geometrical constraints on the choice of the dual volumes, we show that $-\div^{\ptTau}$, $\grad^\ptTau$ are linked by the ``discrete duality property'', which is an analogue of the integration-by-parts formula. The primal mesh need not be conformal, and its interfaces can be general polygons. We give several numerical examples for anisotropic linear diffusion problems; good convergence properties are observed. The sequel [3] of this paper will summarize some key discrete functional analysis tools for DDFV schemes and give applications to proving convergence of DDFV schemes for several nonlinear degenerate parabolic PDEs.Lire moins >
Lire la suite >This work is intended to provide a convenient tool for the mathematical analysis of a particular kind of finite volume approximation which can be used, for instance, in the context of nonlinear and/or anisotropic diffusion operators in 3D. Following the approach developed by F. Hermeline and by K.~Domelevo and P. Omnès in 2D, we consider a ``double'' covering $\Tau$ of a three-dimensional domain by a rather general primal mesh and by a well-chosen ``dual'' mesh. The associated discrete divergence operator $\div^{\ptTau}$ is obtained by the standard finite volume approach. A simple and consistent discrete gradient operator $\grad^\ptTau$ is defined by local affine interpolation that takes into account the geometry of the double mesh. Under mild geometrical constraints on the choice of the dual volumes, we show that $-\div^{\ptTau}$, $\grad^\ptTau$ are linked by the ``discrete duality property'', which is an analogue of the integration-by-parts formula. The primal mesh need not be conformal, and its interfaces can be general polygons. We give several numerical examples for anisotropic linear diffusion problems; good convergence properties are observed. The sequel [3] of this paper will summarize some key discrete functional analysis tools for DDFV schemes and give applications to proving convergence of DDFV schemes for several nonlinear degenerate parabolic PDEs.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Commentaire :
This is a largely extended version with respect to version 1.
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- AndBendHubKrell-I-preprint2011.pdf
- Accès libre
- Accéder au document
- AndBendHubKrell-I-preprint2011.pdf
- Accès libre
- Accéder au document