Benchmark 3D: a version of the DDFV scheme ...
Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Title :
Benchmark 3D: a version of the DDFV scheme with cell/vertex unknowns on general meshes
Author(s) :
Andreianov, Boris [Auteur]
Laboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
Hubert, Florence [Auteur]
Laboratoire d'Analyse, Topologie, Probabilités [LATP]
Krell, Stella [Auteur]
Laboratoire d'Analyse, Topologie, Probabilités [LATP]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Laboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
Hubert, Florence [Auteur]
Laboratoire d'Analyse, Topologie, Probabilités [LATP]
Krell, Stella [Auteur]
Laboratoire d'Analyse, Topologie, Probabilités [LATP]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Conference title :
Finite Volumes for Complex Applications VI
City :
Prague
Country :
République tchèque
Start date of the conference :
2011-06
Publisher :
Springer
Publication date :
2011
English keyword(s) :
Anisotropy benchmark
3D CeVe-DDFV scheme
Discrete gradient reconstruction
General non-conformal meshes
Discrete duality
3D CeVe-DDFV scheme
Discrete gradient reconstruction
General non-conformal meshes
Discrete duality
HAL domain(s) :
Mathématiques [math]/Analyse numérique [math.NA]
English abstract : [en]
This paper gives numerical results for a 3D extension of the 2D DDFV scheme. Our scheme is of the same inspiration as the one called CeVe-DDFV ([9]), with a more straightforward dual mesh construction. We sketch the ...
Show more >This paper gives numerical results for a 3D extension of the 2D DDFV scheme. Our scheme is of the same inspiration as the one called CeVe-DDFV ([9]), with a more straightforward dual mesh construction. We sketch the construction in which, starting from a given 3D mesh (which can be non conformal and have arbitrary polygonal faces), one defines a dual mesh and a diamond mesh, reconstructs a discrete gradient, and proves the discrete duality property. Details can be found in [1].Show less >
Show more >This paper gives numerical results for a 3D extension of the 2D DDFV scheme. Our scheme is of the same inspiration as the one called CeVe-DDFV ([9]), with a more straightforward dual mesh construction. We sketch the construction in which, starting from a given 3D mesh (which can be non conformal and have arbitrary polygonal faces), one defines a dual mesh and a diamond mesh, reconstructs a discrete gradient, and proves the discrete duality property. Details can be found in [1].Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- AndrHubertKrell-Bench3D-FVCA6-HAL.pdf
- Open access
- Access the document
- AndrHubertKrell-Bench3D-FVCA6-HAL.pdf
- Open access
- Access the document