Self-similarity parameter estimation and ...
Document type :
Pré-publication ou Document de travail
Title :
Self-similarity parameter estimation and reproduction property for non-Gaussian Hermite processes
Author(s) :
Chronopoulou, Alexandra [Auteur]
Department of Statistics [West Lafayette]
Viens, Frederi [Auteur]
Department of Statistics [West Lafayette]
Tudor, Ciprian [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Department of Statistics [West Lafayette]
Viens, Frederi [Auteur]
Department of Statistics [West Lafayette]
Tudor, Ciprian [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
English keyword(s) :
parameter estimation
multiple Wiener integral
Hermite process
fractional Brownian motion
non-central limit theorem
quadratic variation
self-similarity
Malliavin calculus
parameter estimation.
multiple Wiener integral
Hermite process
fractional Brownian motion
non-central limit theorem
quadratic variation
self-similarity
Malliavin calculus
parameter estimation.
HAL domain(s) :
Mathématiques [math]/Probabilités [math.PR]
Mathématiques [math]/Statistiques [math.ST]
Statistiques [stat]/Théorie [stat.TH]
Mathématiques [math]/Statistiques [math.ST]
Statistiques [stat]/Théorie [stat.TH]
English abstract : [en]
We consider the class of all the Hermite processes $(Z_{t}^{(q,H)})_{t\in \lbrack 0,1]}$ of order $q\in \mathbf{N}^{\ast }$ and with Hurst parameter $% H\in (\frac{1}{2},1)$. The process $Z^{(q,H)}$ is $H$-selfsimilar, it ...
Show more >We consider the class of all the Hermite processes $(Z_{t}^{(q,H)})_{t\in \lbrack 0,1]}$ of order $q\in \mathbf{N}^{\ast }$ and with Hurst parameter $% H\in (\frac{1}{2},1)$. The process $Z^{(q,H)}$ is $H$-selfsimilar, it has stationary increments and it exhibits long-range dependence identical to that of fractional Brownian motion (fBm). For $q=1$, $Z^{(1,H)}$ is fBm, which is Gaussian; for $q=2$, $Z^{(2,H)}$ is the Rosenblatt process, which lives in the second Wiener chaos; for any $q>2$, $Z^{(q,H)}$ is a process in the $q$th Wiener chaos. We study the variations of $Z^{(q,H)}$ for any $q$, by using multiple Wiener -It\^{o} stochastic integrals and Malliavin calculus. We prove a reproduction property for this class of processes in the sense that the terms appearing in the chaotic decomposition of their variations give rise to other Hermite processes of different orders and with different Hurst parameters. We apply our results to construct a strongly consistent estimator for the self-similarity parameter $H$ from discrete observations of $Z^{(q,H)}$; the asymptotics of this estimator, after appropriate normalization, are proved to be distributed like a Rosenblatt random variable (value at time $1$ of a Rosenblatt process).with self-similarity parameter $1+2(H-1)/q$.Show less >
Show more >We consider the class of all the Hermite processes $(Z_{t}^{(q,H)})_{t\in \lbrack 0,1]}$ of order $q\in \mathbf{N}^{\ast }$ and with Hurst parameter $% H\in (\frac{1}{2},1)$. The process $Z^{(q,H)}$ is $H$-selfsimilar, it has stationary increments and it exhibits long-range dependence identical to that of fractional Brownian motion (fBm). For $q=1$, $Z^{(1,H)}$ is fBm, which is Gaussian; for $q=2$, $Z^{(2,H)}$ is the Rosenblatt process, which lives in the second Wiener chaos; for any $q>2$, $Z^{(q,H)}$ is a process in the $q$th Wiener chaos. We study the variations of $Z^{(q,H)}$ for any $q$, by using multiple Wiener -It\^{o} stochastic integrals and Malliavin calculus. We prove a reproduction property for this class of processes in the sense that the terms appearing in the chaotic decomposition of their variations give rise to other Hermite processes of different orders and with different Hurst parameters. We apply our results to construct a strongly consistent estimator for the self-similarity parameter $H$ from discrete observations of $Z^{(q,H)}$; the asymptotics of this estimator, after appropriate normalization, are proved to be distributed like a Rosenblatt random variable (value at time $1$ of a Rosenblatt process).with self-similarity parameter $1+2(H-1)/q$.Show less >
Language :
Anglais
Comment :
To appear in "Communications on Stochastic Analysis"
Collections :
Source :
Files
- document
- Open access
- Access the document
- hermite-variations-new3COSA.pdf
- Open access
- Access the document
- 0807.1208
- Open access
- Access the document