Model-based Clustering with Missing Not ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Model-based Clustering with Missing Not At Random Data
Author(s) :
Sportisse, Aude [Auteur]
Université Côte d'Azur [UniCA]
Modèles et algorithmes pour l’intelligence artificielle [MAASAI]
Marbac, Matthieu [Auteur]
Université de Rennes [UR]
Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] [ENSAI]
Centre National de la Recherche Scientifique [CNRS]
Centre de Recherche en Economie et Statistique [Bruz] [CREST]
Laporte, Fabien [Auteur]
Nantes Université [Nantes Univ]
Centre National de la Recherche Scientifique [CNRS]
ITX-lab unité de recherche de l'institut du thorax UMR1087 UMR6291 [ITX-lab]
Celeux, Gilles [Auteur]
Université Paris-Saclay
Statistique mathématique et apprentissage [CELESTE]
Boyer, Claire [Auteur]
Sorbonne Université [SU]
Laboratoire de Probabilités, Statistique et Modélisation [LPSM (UMR_8001)]
Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales [MOKAPLAN]
Josse, Julie [Auteur]
Institut Desbrest de santé publique [IDESP]
Médecine de précision par intégration de données et inférence causale [PREMEDICAL]
Biernacki, Christophe [Auteur]
Université Lille Nord (France)
Centre National de la Recherche Scientifique [CNRS]
MOdel for Data Analysis and Learning [MODAL]
Université Côte d'Azur [UniCA]
Modèles et algorithmes pour l’intelligence artificielle [MAASAI]
Marbac, Matthieu [Auteur]
Université de Rennes [UR]
Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] [ENSAI]
Centre National de la Recherche Scientifique [CNRS]
Centre de Recherche en Economie et Statistique [Bruz] [CREST]
Laporte, Fabien [Auteur]
Nantes Université [Nantes Univ]
Centre National de la Recherche Scientifique [CNRS]
ITX-lab unité de recherche de l'institut du thorax UMR1087 UMR6291 [ITX-lab]
Celeux, Gilles [Auteur]
Université Paris-Saclay
Statistique mathématique et apprentissage [CELESTE]
Boyer, Claire [Auteur]
Sorbonne Université [SU]
Laboratoire de Probabilités, Statistique et Modélisation [LPSM (UMR_8001)]
Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales [MOKAPLAN]
Josse, Julie [Auteur]
Institut Desbrest de santé publique [IDESP]
Médecine de précision par intégration de données et inférence causale [PREMEDICAL]
Biernacki, Christophe [Auteur]
Université Lille Nord (France)
Centre National de la Recherche Scientifique [CNRS]
MOdel for Data Analysis and Learning [MODAL]
Journal title :
Statistics and Computing
Publisher :
Springer Verlag (Germany)
Publication date :
2024-06-18
ISSN :
0960-3174
English keyword(s) :
Model-based Clustering
Informative Missing Values
EM and Stochastic EM Algorithms
Medical Data
Informative Missing Values
EM and Stochastic EM Algorithms
Medical Data
HAL domain(s) :
Statistiques [stat]/Machine Learning [stat.ML]
English abstract : [en]
Model-based unsupervised learning, as any learning task, stalls as soon as missingdata occurs. This is even more true when the missing data are informative, or saidmissing not at random (MNAR). In this paper, we propose ...
Show more >Model-based unsupervised learning, as any learning task, stalls as soon as missingdata occurs. This is even more true when the missing data are informative, or saidmissing not at random (MNAR). In this paper, we propose model-based clustering algorithms designed to handle very general types of missing data, including MNAR data. To do so, we introduce a mixture model for different types of data (continuous, count, categorical and mixed) to jointly model the data distribution and the MNAR mechanism, remaining vigilant to the relative degrees of freedom of each. Several MNAR models are discussed, for which the cause of the missingness can depend on both the values of the missing variable themselves and on the class membership. However, we focus on a specific MNAR model, called MNARz, for which the missingness only depends on the class membership. We first underline its ease of estimation, by showing that the statistical inference can be carried out on the data matrix concatenated with the missing mask considering finally a standard MAR mechanism. Consequently, we propose to perform clustering using the Expectation Maximization algorithm, specially developed for this simplified reinterpretation. Finally, we assess the numerical performances of the proposedmethods on synthetic data and on the real medical registry TraumaBase® aswell.Show less >
Show more >Model-based unsupervised learning, as any learning task, stalls as soon as missingdata occurs. This is even more true when the missing data are informative, or saidmissing not at random (MNAR). In this paper, we propose model-based clustering algorithms designed to handle very general types of missing data, including MNAR data. To do so, we introduce a mixture model for different types of data (continuous, count, categorical and mixed) to jointly model the data distribution and the MNAR mechanism, remaining vigilant to the relative degrees of freedom of each. Several MNAR models are discussed, for which the cause of the missingness can depend on both the values of the missing variable themselves and on the class membership. However, we focus on a specific MNAR model, called MNARz, for which the missingness only depends on the class membership. We first underline its ease of estimation, by showing that the statistical inference can be carried out on the data matrix concatenated with the missing mask considering finally a standard MAR mechanism. Consequently, we propose to perform clustering using the Expectation Maximization algorithm, specially developed for this simplified reinterpretation. Finally, we assess the numerical performances of the proposedmethods on synthetic data and on the real medical registry TraumaBase® aswell.Show less >
Language :
Anglais
Popular science :
Non
ANR Project :
Collections :
Source :
Files
- document
- Open access
- Access the document
- main.pdf
- Open access
- Access the document
- 2112.10425
- Open access
- Access the document