Growth of frequently hypercyclic functions ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Growth of frequently hypercyclic functions for some weighted Taylor shifts on the unit disc
Author(s) :
Mouze, Augustin [Auteur]
Centrale Lille
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Munnier, Vincent [Auteur]
Centrale Lille
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Munnier, Vincent [Auteur]
Journal title :
Canadian Mathematical Bulletin
Pages :
264-281
Publisher :
Cambridge University Press
Publication date :
2021
ISSN :
0008-4395
HAL domain(s) :
Mathématiques [math]
English abstract : [en]
Abstract For any $\alpha \in \mathbb {R},$ we consider the weighted Taylor shift operators $T_{\alpha }$ acting on the space of analytic functions in the unit disc given by $T_{\alpha }:H(\mathbb {D})\rightarrow H(\mathbb ...
Show more >Abstract For any $\alpha \in \mathbb {R},$ we consider the weighted Taylor shift operators $T_{\alpha }$ acting on the space of analytic functions in the unit disc given by $T_{\alpha }:H(\mathbb {D})\rightarrow H(\mathbb {D}),$ $$ \begin{align*}f(z)=\sum_{k\geq 0}a_{k}z^{k}\mapsto T_{\alpha}(f)(z)=a_1+\sum_{k\geq 1}\Big(1+\frac{1}{k}\Big)^{\alpha}a_{k+1}z^{k}.\end{align*}$$ We establish the optimal growth of frequently hypercyclic functions for $T_\alpha $ in terms of $L^p$ averages, $1\leq p\leq +\infty $ . This allows us to highlight a critical exponent.Show less >
Show more >Abstract For any $\alpha \in \mathbb {R},$ we consider the weighted Taylor shift operators $T_{\alpha }$ acting on the space of analytic functions in the unit disc given by $T_{\alpha }:H(\mathbb {D})\rightarrow H(\mathbb {D}),$ $$ \begin{align*}f(z)=\sum_{k\geq 0}a_{k}z^{k}\mapsto T_{\alpha}(f)(z)=a_1+\sum_{k\geq 1}\Big(1+\frac{1}{k}\Big)^{\alpha}a_{k+1}z^{k}.\end{align*}$$ We establish the optimal growth of frequently hypercyclic functions for $T_\alpha $ in terms of $L^p$ averages, $1\leq p\leq +\infty $ . This allows us to highlight a critical exponent.Show less >
Language :
Anglais
Popular science :
Non
ANR Project :
Collections :
Source :