Non-central limit theorem for the cubic ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Non-central limit theorem for the cubic variation of a class of selfsimilar stochastic processes
Auteur(s) :
Es-Sebaiy, Khalifa [Auteur]
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Tudor, Ciprian [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Tudor, Ciprian [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
SIAM Theory of Probability and its Applications
Pagination :
1-23
Éditeur :
Society for Industrial and Applied Mathematics
Date de publication :
2010
ISSN :
1095-7219
Discipline(s) HAL :
Mathématiques [math]/Probabilités [math.PR]
Résumé en anglais : [en]
By using multiple Wiener-Itô stochastic integrals, we study the cubic variation of a class of selfsimilar stochastic processes with stationary increments (the Rosenblatt process with selfsimilarity order $H\in (\frac{1}{2}, ...
Lire la suite >By using multiple Wiener-Itô stochastic integrals, we study the cubic variation of a class of selfsimilar stochastic processes with stationary increments (the Rosenblatt process with selfsimilarity order $H\in (\frac{1}{2}, 1)$). This study is motivated by statistical purposes. We prove that this renormalized cubic variation satisfies a non-central limit theorem and its limit is (in the $L^{2}(\Omega)$ sense) still the Rosenblatt process.Lire moins >
Lire la suite >By using multiple Wiener-Itô stochastic integrals, we study the cubic variation of a class of selfsimilar stochastic processes with stationary increments (the Rosenblatt process with selfsimilarity order $H\in (\frac{1}{2}, 1)$). This study is motivated by statistical purposes. We prove that this renormalized cubic variation satisfies a non-central limit theorem and its limit is (in the $L^{2}(\Omega)$ sense) still the Rosenblatt process.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Commentaire :
To appear in "Theory of Probability and its Applications"
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- cubicROSE-TVP-revised.pdf
- Accès libre
- Accéder au document