A survey of cross-validation procedures ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
A survey of cross-validation procedures for model selection
Auteur(s) :
Arlot, Sylvain [Auteur]
Laboratoire d'informatique de l'école normale supérieure [LIENS]
Celisse, Alain [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire d'informatique de l'école normale supérieure [LIENS]
Celisse, Alain [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Statistics Surveys
Pagination :
40--79
Éditeur :
Institute of Mathematical Statistics (IMS)
Date de publication :
2010
ISSN :
1935-7516
Mot(s)-clé(s) en anglais :
model selection
cross-validation
leave-one-out
cross-validation
leave-one-out
Discipline(s) HAL :
Mathématiques [math]/Statistiques [math.ST]
Statistiques [stat]/Autres [stat.ML]
Statistiques [stat]/Théorie [stat.TH]
Statistiques [stat]/Applications [stat.AP]
Statistiques [stat]/Méthodologie [stat.ME]
Statistiques [stat]/Autres [stat.ML]
Statistiques [stat]/Théorie [stat.TH]
Statistiques [stat]/Applications [stat.AP]
Statistiques [stat]/Méthodologie [stat.ME]
Résumé en anglais : [en]
Used to estimate the risk of an estimator or to perform model selection, cross-validation is a widespread strategy because of its simplicity and its apparent universality. Many results exist on the model selection performances ...
Lire la suite >Used to estimate the risk of an estimator or to perform model selection, cross-validation is a widespread strategy because of its simplicity and its apparent universality. Many results exist on the model selection performances of cross-validation procedures. This survey intends to relate these results to the most recent advances of model selection theory, with a particular emphasis on distinguishing empirical statements from rigorous theoretical results. As a conclusion, guidelines are provided for choosing the best cross-validation procedure according to the particular features of the problem in hand.Lire moins >
Lire la suite >Used to estimate the risk of an estimator or to perform model selection, cross-validation is a widespread strategy because of its simplicity and its apparent universality. Many results exist on the model selection performances of cross-validation procedures. This survey intends to relate these results to the most recent advances of model selection theory, with a particular emphasis on distinguishing empirical statements from rigorous theoretical results. As a conclusion, guidelines are provided for choosing the best cross-validation procedure according to the particular features of the problem in hand.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Commentaire :
Published in Statistics Surveys (2010) 4, 40-79
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- preprintLilleArlotCelisse.pdf
- Accès libre
- Accéder au document
- 0907.4728
- Accès libre
- Accéder au document