IP-Dirichlet measures and IP-rigid dynamical ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
IP-Dirichlet measures and IP-rigid dynamical systems: an approach via generalized Riesz products
Auteur(s) :
Titre de la revue :
Studia Mathematica
Pagination :
237-259
Éditeur :
Instytut Matematyczny - Polska Akademii Nauk
Date de publication :
2013
ISSN :
0039-3223
Mot(s)-clé(s) en anglais :
Dirichlet and IP-Dirichlet measures
rigid and IP-rigid weakly mixing dynamical systems
generalized Riesz products
rigid and IP-rigid weakly mixing dynamical systems
generalized Riesz products
Discipline(s) HAL :
Mathématiques [math]/Systèmes dynamiques [math.DS]
Résumé en anglais : [en]
If (nk)k≥1 is a strictly increasing sequence of integers, a continuous probability measure σ on the unit circle T is said to be IP-Dirichlet with respect to (nk)k≥1 if σˆ(Σk∈F nk) → 1 as F runs over all non-empty finite ...
Lire la suite >If (nk)k≥1 is a strictly increasing sequence of integers, a continuous probability measure σ on the unit circle T is said to be IP-Dirichlet with respect to (nk)k≥1 if σˆ(Σk∈F nk) → 1 as F runs over all non-empty finite subsets F of N and the minimum of F tends to infinity. IP-Dirichlet measures and their connections with IP-rigid dynamical systems have been investigated recently by Aaronson, Hosseini and Lema´nczyk. We simplify and generalize some of their results, using an approach involving generalized Riesz products.Lire moins >
Lire la suite >If (nk)k≥1 is a strictly increasing sequence of integers, a continuous probability measure σ on the unit circle T is said to be IP-Dirichlet with respect to (nk)k≥1 if σˆ(Σk∈F nk) → 1 as F runs over all non-empty finite subsets F of N and the minimum of F tends to infinity. IP-Dirichlet measures and their connections with IP-rigid dynamical systems have been investigated recently by Aaronson, Hosseini and Lema´nczyk. We simplify and generalize some of their results, using an approach involving generalized Riesz products.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- IP-Dirichet-III.pdf
- Accès libre
- Accéder au document
- 1209.2884
- Accès libre
- Accéder au document