Non compact (2+1)-TQFTs from non-semisimple ...
Document type :
Pré-publication ou Document de travail
Title :
Non compact (2+1)-TQFTs from non-semisimple spherical categories
Author(s) :
Costantino, Francesco [Auteur]
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Geer, Nathan [Auteur]
Patureau-Mirand, Bertrand [Auteur]
Laboratoire de Mathématiques de Bretagne Atlantique [LMBA]
Virelizier, Alexis [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Geer, Nathan [Auteur]
Patureau-Mirand, Bertrand [Auteur]
Laboratoire de Mathématiques de Bretagne Atlantique [LMBA]
Virelizier, Alexis [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Publication date :
2023-02-09
HAL domain(s) :
Mathématiques [math]
English abstract : [en]
To every spherical tensor category (in the sense of Etingof, Douglas et al.) we define a finite dimensional non-compact (2+1)-TQFT (a TQFT for short). More generally, we define a TQFT for every pivotal category with ...
Show more >To every spherical tensor category (in the sense of Etingof, Douglas et al.) we define a finite dimensional non-compact (2+1)-TQFT (a TQFT for short). More generally, we define a TQFT for every pivotal category with non-degenerate m-trace and chromatic morphism. The TQFT of closed surfaces are the admissible skein modules (given in a joint preprint of the first three authors) and the underlying invariants of closed 3-manifolds of the TQFT are the generalized (non-semisimple) Turaev-Viro type invariants defined in arXiv:1809.07991. We expect that our construction is related to the general universal non semi-simple TQFT announced by Kevin Walker and David Reutter.Show less >
Show more >To every spherical tensor category (in the sense of Etingof, Douglas et al.) we define a finite dimensional non-compact (2+1)-TQFT (a TQFT for short). More generally, we define a TQFT for every pivotal category with non-degenerate m-trace and chromatic morphism. The TQFT of closed surfaces are the admissible skein modules (given in a joint preprint of the first three authors) and the underlying invariants of closed 3-manifolds of the TQFT are the generalized (non-semisimple) Turaev-Viro type invariants defined in arXiv:1809.07991. We expect that our construction is related to the general universal non semi-simple TQFT announced by Kevin Walker and David Reutter.Show less >
Language :
Anglais
Comment :
10 pages
Collections :
Source :
Files
- 2302.04509
- Open access
- Access the document