On the square-root approximation finite ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
On the square-root approximation finite volume scheme for nonlinear drift-diffusion equations
Auteur(s) :
Cancès, Clément [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Venel, Juliette [Auteur]
Laboratoire de Matériaux Céramiques et de Mathématiques [CERAMATHS]
Université Polytechnique Hauts-de-France [UPHF]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Venel, Juliette [Auteur]
Laboratoire de Matériaux Céramiques et de Mathématiques [CERAMATHS]
Université Polytechnique Hauts-de-France [UPHF]
Titre de la revue :
Comptes Rendus. Mathématique
Pagination :
535--558
Éditeur :
Académie des sciences (Paris)
Date de publication :
2023
ISSN :
1631-073X
Mot(s)-clé(s) en anglais :
Nonlinear convection diffusion
finite volume method
energy dissipation
convergence
finite volume method
energy dissipation
convergence
Discipline(s) HAL :
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
We study a finite volume scheme for the approximation of the solution to convection diffusion equations with nonlinear convection and Robin boundary conditions. The scheme builds on the interpretation of such a continuous ...
Lire la suite >We study a finite volume scheme for the approximation of the solution to convection diffusion equations with nonlinear convection and Robin boundary conditions. The scheme builds on the interpretation of such a continuous equation as the hydrodynamic limit of some simple exclusion jump process. We show that the scheme admits a unique discrete solution, that the natural bounds on the solution are preserved, and that it encodes the second principle of thermodynamics in the sense that some free energy is dissipated along time. The convergence of the scheme is then rigorously established thanks to compactness arguments. Numerical simulations are finally provided, highlighting the overall good behavior of the scheme.Lire moins >
Lire la suite >We study a finite volume scheme for the approximation of the solution to convection diffusion equations with nonlinear convection and Robin boundary conditions. The scheme builds on the interpretation of such a continuous equation as the hydrodynamic limit of some simple exclusion jump process. We show that the scheme admits a unique discrete solution, that the natural bounds on the solution are preserved, and that it encodes the second principle of thermodynamics in the sense that some free energy is dissipated along time. The convergence of the scheme is then rigorously established thanks to compactness arguments. Numerical simulations are finally provided, highlighting the overall good behavior of the scheme.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- SQRA_Lacunaire_revised.pdf
- Accès libre
- Accéder au document