Lie-Trotter Splitting for the Nonlinear ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Lie-Trotter Splitting for the Nonlinear Stochastic Manakov System
Auteur(s) :
Berg, André [Auteur]
Umeå University = Umeå Universitet
Cohen, David [Auteur]
Department of Mathematical Sciences [Chalmers]
Dujardin, Guillaume [Auteur]
Systèmes de particules et systèmes dynamiques [Paradyse]
Umeå University = Umeå Universitet
Cohen, David [Auteur]
Department of Mathematical Sciences [Chalmers]
Dujardin, Guillaume [Auteur]
Systèmes de particules et systèmes dynamiques [Paradyse]
Titre de la revue :
Journal of Scientific Computing
Éditeur :
Springer Verlag
Date de publication :
2021-05-22
ISSN :
0885-7474
Mot(s)-clé(s) en anglais :
Stochastic partial differential equations
Stochastic Manakov equation
Coupled system of stochastic nonlinear Schrödinger equations
Numerical schemes
Splitting scheme
Lie–Trotter scheme
Strong convergence
Convergence in probability
Almost sure convergence
Convergence rates
Blowup
Stochastic Manakov equation
Coupled system of stochastic nonlinear Schrödinger equations
Numerical schemes
Splitting scheme
Lie–Trotter scheme
Strong convergence
Convergence in probability
Almost sure convergence
Convergence rates
Blowup
Discipline(s) HAL :
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Science non linéaire [physics]/Formation de Structures et Solitons [nlin.PS]
Physique [physics]/Physique [physics]/Optique [physics.optics]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Science non linéaire [physics]/Formation de Structures et Solitons [nlin.PS]
Physique [physics]/Physique [physics]/Optique [physics.optics]
Résumé en anglais : [en]
This article analyses the convergence of the Lie-Trotter splitting scheme for the stochastic Manakov equation, a system arising in the study of pulse propagation in randomly birefringent optical fibers. First, we prove ...
Lire la suite >This article analyses the convergence of the Lie-Trotter splitting scheme for the stochastic Manakov equation, a system arising in the study of pulse propagation in randomly birefringent optical fibers. First, we prove that the strong order of the numerical approximation is 1/2 if the nonlinear term in the system is globally Lipschitz. Then, we show that the splitting scheme has convergence order 1/2 in probability and almost sure order 1/2- in the case of a cubic nonlinearity. We provide several numerical experiments illustrating the aforementioned results and the efficiency of the Lie-Trotter splitting scheme. Finally, we numerically investigate the possible blowup of solutions for some power-law nonlinearities.Lire moins >
Lire la suite >This article analyses the convergence of the Lie-Trotter splitting scheme for the stochastic Manakov equation, a system arising in the study of pulse propagation in randomly birefringent optical fibers. First, we prove that the strong order of the numerical approximation is 1/2 if the nonlinear term in the system is globally Lipschitz. Then, we show that the splitting scheme has convergence order 1/2 in probability and almost sure order 1/2- in the case of a cubic nonlinearity. We provide several numerical experiments illustrating the aforementioned results and the efficiency of the Lie-Trotter splitting scheme. Finally, we numerically investigate the possible blowup of solutions for some power-law nonlinearities.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- lieManakov.preprint.HAL.pdf
- Accès libre
- Accéder au document
- 2010.15679
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- lieManakov.preprint.HAL.pdf
- Accès libre
- Accéder au document