UNIVERSAL TAYLOR SERIES WITH RESPECT TO A ...
Document type :
Pré-publication ou Document de travail
Title :
UNIVERSAL TAYLOR SERIES WITH RESPECT TO A PRESCRIBED SUBSEQUENCE
Author(s) :
HAL domain(s) :
Mathématiques [math]/Variables complexes [math.CV]
Mathématiques [math]/Analyse fonctionnelle [math.FA]
Mathématiques [math]/Analyse classique [math.CA]
Mathématiques [math]/Analyse fonctionnelle [math.FA]
Mathématiques [math]/Analyse classique [math.CA]
English abstract : [en]
For a holomorphic function $f$ in the open unit disc $\mathbb{D}$ and $\zeta\in\mathbb{D}$, $S_n(f,\zeta)$ denotes the $n$-th partial sum of the Taylor development of $f$ at $\zeta$. Given an increasing sequence of positive ...
Show more >For a holomorphic function $f$ in the open unit disc $\mathbb{D}$ and $\zeta\in\mathbb{D}$, $S_n(f,\zeta)$ denotes the $n$-th partial sum of the Taylor development of $f$ at $\zeta$. Given an increasing sequence of positive integers $\mu=(\mu_n)$, we consider the classes $\mathcal{U}(\mathbb{D},\zeta)$ (resp. $\mathcal{U}^{(\mu)}(\mathbb{D},\zeta)$) of such functions $f$ such that the partial sums $\{S_n(f,\zeta):n=1,2,\dots\}$ (resp. $\{S_{\mu_n}(f,\zeta):n=1,2,\dots\}$) approximate all polynomials uniformly on the compact sets $K\subset\{z\in\mathbb{C}:\vert z\vert\geq 1\}$ with connected complement. We show that these two classes of universal Taylor series coincide if and only if $\limsup_n\left(\frac{\mu_{n+1}}{\mu_n}\right)<+\infty$. In the same spirit, we prove that, for $\zeta\ne 0,$ we have the equality $\mathcal{U}^{(\mu)}(\mathbb{D},\zeta)=\mathcal{U}^{(\mu)}(\mathbb{D},0)$ if and only if $\limsup_n\left(\frac{\mu_{n+1}}{\mu_n}\right)<+\infty$. Finally we deal with the case of real universal Taylor series.Show less >
Show more >For a holomorphic function $f$ in the open unit disc $\mathbb{D}$ and $\zeta\in\mathbb{D}$, $S_n(f,\zeta)$ denotes the $n$-th partial sum of the Taylor development of $f$ at $\zeta$. Given an increasing sequence of positive integers $\mu=(\mu_n)$, we consider the classes $\mathcal{U}(\mathbb{D},\zeta)$ (resp. $\mathcal{U}^{(\mu)}(\mathbb{D},\zeta)$) of such functions $f$ such that the partial sums $\{S_n(f,\zeta):n=1,2,\dots\}$ (resp. $\{S_{\mu_n}(f,\zeta):n=1,2,\dots\}$) approximate all polynomials uniformly on the compact sets $K\subset\{z\in\mathbb{C}:\vert z\vert\geq 1\}$ with connected complement. We show that these two classes of universal Taylor series coincide if and only if $\limsup_n\left(\frac{\mu_{n+1}}{\mu_n}\right)<+\infty$. In the same spirit, we prove that, for $\zeta\ne 0,$ we have the equality $\mathcal{U}^{(\mu)}(\mathbb{D},\zeta)=\mathcal{U}^{(\mu)}(\mathbb{D},0)$ if and only if $\limsup_n\left(\frac{\mu_{n+1}}{\mu_n}\right)<+\infty$. Finally we deal with the case of real universal Taylor series.Show less >
Language :
Anglais
Collections :
Source :
Files
- document
- Open access
- Access the document
- Caract_Subsequences_v5.pdf
- Open access
- Access the document
- 2006.12925
- Open access
- Access the document