Decay of solutions to one dimensional ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion
Author(s) :
Dumont, Serge [Auteur]
Université de Nîmes [UNIMES]
Institut Montpelliérain Alexander Grothendieck [IMAG]
Goubet, Olivier [Auteur]
Systèmes de particules et systèmes dynamiques [Paradyse]
Mammeri, Youcef [Auteur]
Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352 UPJV [LAMFA]
Université de Nîmes [UNIMES]
Institut Montpelliérain Alexander Grothendieck [IMAG]
Goubet, Olivier [Auteur]
Systèmes de particules et systèmes dynamiques [Paradyse]
Mammeri, Youcef [Auteur]
Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352 UPJV [LAMFA]
Journal title :
Discrete and Continuous Dynamical Systems - Series S
Pages :
2877-2891
Publisher :
American Institute of Mathematical Sciences
Publication date :
2021
ISSN :
1937-1632
HAL domain(s) :
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
English abstract : [en]
In this article, the asymptotic behavior of the solution to the following one dimensional Schrodinger equations with white noise dispersionidu + u(xx) o dW + vertical bar u vertical bar(p-1)udt = 0 is studied. Here the ...
Show more >In this article, the asymptotic behavior of the solution to the following one dimensional Schrodinger equations with white noise dispersionidu + u(xx) o dW + vertical bar u vertical bar(p-1)udt = 0 is studied. Here the equation is written in the Stratonovich formulation, and W (t) is a standard real valued Brownian motion. After establishing the global well-posedness, theoretical proof and numerical investigations are provided showing that, for a deterministic small enough initial data in L-x(1) boolean AND H-x(1), the expectation of the L-x(infinity) norm of the solutions decay to zero at O(t(-1/4)) as t goes to +infinity, as soon as p > 7.Show less >
Show more >In this article, the asymptotic behavior of the solution to the following one dimensional Schrodinger equations with white noise dispersionidu + u(xx) o dW + vertical bar u vertical bar(p-1)udt = 0 is studied. Here the equation is written in the Stratonovich formulation, and W (t) is a standard real valued Brownian motion. After establishing the global well-posedness, theoretical proof and numerical investigations are provided showing that, for a deterministic small enough initial data in L-x(1) boolean AND H-x(1), the expectation of the L-x(infinity) norm of the solutions decay to zero at O(t(-1/4)) as t goes to +infinity, as soon as p > 7.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :