Segmentation in the mean of heteroscedastic ...
Document type :
Communication dans un congrès avec actes
Title :
Segmentation in the mean of heteroscedastic data via resampling or cross-validation
Author(s) :
Celisse, Alain [Auteur]
Mathématiques et Informatique Appliquées [MIA-Paris]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Université de Lille, Sciences et Technologies
Arlot, Sylvain [Auteur]
Laboratoire d'informatique de l'école normale supérieure [LIENS]
École normale supérieure - Cachan [ENS Cachan]
Mathématiques et Informatique Appliquées [MIA-Paris]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Université de Lille, Sciences et Technologies
Arlot, Sylvain [Auteur]
Laboratoire d'informatique de l'école normale supérieure [LIENS]
École normale supérieure - Cachan [ENS Cachan]
Conference title :
Workshop Change-Point Detection Methods and Applications
City :
Paris
Country :
France
Start date of the conference :
2008-09-11
Publication date :
2010
Keyword(s) :
hétéroscédastique
point de modification
point de modification
English keyword(s) :
change-point detection
resampling
cross-validation
model selection
heteroscedastic data
cgh profile segmentation
resampling
cross-validation
model selection
heteroscedastic data
cgh profile segmentation
HAL domain(s) :
Mathématiques [math]
Informatique [cs]
Informatique [cs]
English abstract : [en]
This paper tackles the problem of detecting abrupt changes in the mean of a heteroscedastic signal by model selection, without knowledge on the variations of the noise. A new family of change-point detection procedures is ...
Show more >This paper tackles the problem of detecting abrupt changes in the mean of a heteroscedastic signal by model selection, without knowledge on the variations of the noise. A new family of change-point detection procedures is proposed, showing that cross-validation methods can be successful in the heteroscedastic framework, whereas most existing procedures are not robust to heteroscedasticity. The robustness to heteroscedasticity of the proposed procedures is supported by an extensive simulation study, together with recent partial theoretical results. An application to Comparative Genomic Hybridization (CGH) data is provided, showing that robustness to heteroscedasticity can indeed be required for their analysis.Show less >
Show more >This paper tackles the problem of detecting abrupt changes in the mean of a heteroscedastic signal by model selection, without knowledge on the variations of the noise. A new family of change-point detection procedures is proposed, showing that cross-validation methods can be successful in the heteroscedastic framework, whereas most existing procedures are not robust to heteroscedasticity. The robustness to heteroscedasticity of the proposed procedures is supported by an extensive simulation study, together with recent partial theoretical results. An application to Comparative Genomic Hybridization (CGH) data is provided, showing that robustness to heteroscedasticity can indeed be required for their analysis.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Nationale
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- 158250_20120312114058838_1.pdf
- Open access
- Access the document