ADDITIVE ENERGY OF DENSE SETS OF PRIMES ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
ADDITIVE ENERGY OF DENSE SETS OF PRIMES AND MONOCHROMATIC SUMS
Auteur(s) :
Ramana, D [Auteur]
Ramaré, Olivier [Auteur]
Centre National de la Recherche Scientifique [CNRS]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Ramaré, Olivier [Auteur]
Centre National de la Recherche Scientifique [CNRS]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Israel Journal of Mathematics
Pagination :
955-974
Éditeur :
Springer
Date de publication :
2014
ISSN :
0021-2172
Discipline(s) HAL :
Mathématiques [math]/Théorie des nombres [math.NT]
Résumé en anglais : [en]
When $K \ge 1$ is an integer and $S$ is a set of prime numbers in the interval $(N/2 , N ]$ with $|S| \ge\pi^* (N)/K$, where $\pi^* (N)$ is the number of primes in this interval, we obtain an upper bound for the additive ...
Lire la suite >When $K \ge 1$ is an integer and $S$ is a set of prime numbers in the interval $(N/2 , N ]$ with $|S| \ge\pi^* (N)/K$, where $\pi^* (N)$ is the number of primes in this interval, we obtain an upper bound for the additive energy of $S$, which is the number of quadruples $(x_1 , x_2 , x_3 , x_4)$ in $S^4$ satisfying $x_1 + x_2 = x_3 + x_4$. We obtain this bound by a variant of a method of Ramaré and I. Ruzsa. Taken together with an argument due to N. Hegyvári and F. Hennecart this bound implies that when the sequence of prime numbers is coloured with $K$ colours, every sufficiently large integer can be written as a sum of no more than $CK \log \log 4K$ prime numbers, all of the same colour, where $C$ is an absolute constant. This assertion is optimal upto the value of C and answers a question of A. Sárközy.Lire moins >
Lire la suite >When $K \ge 1$ is an integer and $S$ is a set of prime numbers in the interval $(N/2 , N ]$ with $|S| \ge\pi^* (N)/K$, where $\pi^* (N)$ is the number of primes in this interval, we obtain an upper bound for the additive energy of $S$, which is the number of quadruples $(x_1 , x_2 , x_3 , x_4)$ in $S^4$ satisfying $x_1 + x_2 = x_3 + x_4$. We obtain this bound by a variant of a method of Ramaré and I. Ruzsa. Taken together with an argument due to N. Hegyvári and F. Hennecart this bound implies that when the sequence of prime numbers is coloured with $K$ colours, every sufficiently large integer can be written as a sum of no more than $CK \log \log 4K$ prime numbers, all of the same colour, where $C$ is an absolute constant. This assertion is optimal upto the value of C and answers a question of A. Sárközy.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- dense_primes_israel.pdf
- Accès libre
- Accéder au document