The number of rational numbers determined ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
The number of rational numbers determined by large sets of integers
Auteur(s) :
Ramaré, Olivier [Auteur]
Centre National de la Recherche Scientifique [CNRS]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Cilleruelo, J. [Auteur]
Ramana, D. [Auteur]
Centre National de la Recherche Scientifique [CNRS]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Cilleruelo, J. [Auteur]
Ramana, D. [Auteur]
Titre de la revue :
Bulletin of the London Mathematical Society
Pagination :
517-526
Éditeur :
London Mathematical Society
Date de publication :
2010-06
ISSN :
0024-6093
Discipline(s) HAL :
Mathématiques [math]/Théorie des nombres [math.NT]
Résumé en anglais : [en]
When $A$ and $B$ are subsets of the integers in $[1, X]$ and $[1, Y ]$, respectively, with $|A| \ge\alpha X$ and $|B|\ge \beta Y$ , we show that the number of rational numbers expressible as $a/b$ with $(a, b)$ in $A \times$ ...
Lire la suite >When $A$ and $B$ are subsets of the integers in $[1, X]$ and $[1, Y ]$, respectively, with $|A| \ge\alpha X$ and $|B|\ge \beta Y$ , we show that the number of rational numbers expressible as $a/b$ with $(a, b)$ in $A \times$ B is $(\alpha\beta)^{1+\epsilon} XY$ for any $\epsilon> 0$, where the implied constant depends on $\epsilon$ alone. We then construct examples that show that this bound cannot, in general, be improved to $\alpha\beta XY$. We also resolve the natural generalization of our problem to arbitrary subsets $C$ of the integer points in $[1, X] \times [1, Y ]$. Finally, we apply our results to answer a question of Sárközy concerning the differences of consecutive terms of the product sequence of a given integer sequence.Lire moins >
Lire la suite >When $A$ and $B$ are subsets of the integers in $[1, X]$ and $[1, Y ]$, respectively, with $|A| \ge\alpha X$ and $|B|\ge \beta Y$ , we show that the number of rational numbers expressible as $a/b$ with $(a, b)$ in $A \times$ B is $(\alpha\beta)^{1+\epsilon} XY$ for any $\epsilon> 0$, where the implied constant depends on $\epsilon$ alone. We then construct examples that show that this bound cannot, in general, be improved to $\alpha\beta XY$. We also resolve the natural generalization of our problem to arbitrary subsets $C$ of the integer points in $[1, X] \times [1, Y ]$. Finally, we apply our results to answer a question of Sárközy concerning the differences of consecutive terms of the product sequence of a given integer sequence.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- DSOF_LMS.pdf
- Accès libre
- Accéder au document
- 0903.2714
- Accès libre
- Accéder au document