A purely analytical lower bound for $L(1, \chi)$
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
A purely analytical lower bound for $L(1, \chi)$
Author(s) :
Journal title :
Annales Mathématiques Blaise Pascal
Pages :
259-265
Publisher :
Université Blaise-Pascal - Clermont-Ferrand
Publication date :
2009
ISSN :
1259-1734
HAL domain(s) :
Mathématiques [math]/Théorie des nombres [math.NT]
English abstract : [en]
We give a simple proof of $L(1, \chi) \sqrt{q}\gg 2^{\omega(q)}$ when $\chi$ is an odd primitive quadratic Dirichlet character of conductor $q$. In particular we do not use the Dirichlet class-number formula.We give a simple proof of $L(1, \chi) \sqrt{q}\gg 2^{\omega(q)}$ when $\chi$ is an odd primitive quadratic Dirichlet character of conductor $q$. In particular we do not use the Dirichlet class-number formula.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- LowerBound-3.pdf
- Open access
- Access the document
- AMBP_2009__16_2_259_0.pdf
- Open access
- Access the document