On four numerical schemes for a unipolar ...
Document type :
Communication dans un congrès avec actes
Title :
On four numerical schemes for a unipolar degenerate drift-diffusion model
Author(s) :
Cancès, Clément [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Chainais-Hillairet, Claire [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Fuhrmann, Jürgen [Auteur]
Numerical Mathematics and Scientific Computing [WIAS]
Gaudeul, Benoît [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Chainais-Hillairet, Claire [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Fuhrmann, Jürgen [Auteur]
Numerical Mathematics and Scientific Computing [WIAS]
Gaudeul, Benoît [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Conference title :
Finite Volumes for Complex Applications IX
City :
Bergen
Country :
Norvège
Start date of the conference :
2020-06-15
Publication date :
2020
English keyword(s) :
Finite Volume Methods
Drift-Diffusion Problems
Energy Methods
Drift-Diffusion Problems
Energy Methods
HAL domain(s) :
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
English abstract : [en]
We consider a unipolar degenerate drift-diffusion system where the relation between the concentration of the charged species c and the chemical potential h is $h(c) = log(c/(1−c))$. For four different finite volume schemes ...
Show more >We consider a unipolar degenerate drift-diffusion system where the relation between the concentration of the charged species c and the chemical potential h is $h(c) = log(c/(1−c))$. For four different finite volume schemes based on four different formulations of the fluxes of the problem, we discuss stability and existence results. For two of them, we report a convergence proof. Numerical experiments illustrate the behaviour of the different schemes.Show less >
Show more >We consider a unipolar degenerate drift-diffusion system where the relation between the concentration of the charged species c and the chemical potential h is $h(c) = log(c/(1−c))$. For four different finite volume schemes based on four different formulations of the fluxes of the problem, we discuss stability and existence results. For two of them, we report a convergence proof. Numerical experiments illustrate the behaviour of the different schemes.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- CCFG.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- CCFG.pdf
- Open access
- Access the document