E. Fricain - Systèmes représentant dans ...
Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...)
Title :
E. Fricain - Systèmes représentant dans les espaces de Hilbert de fonctions analytiques
Author(s) :
Fricain, Emmanuel [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Bastien, Fanny []
Institut Fourier [IF ]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Bastien, Fanny []
Institut Fourier [IF ]
Publication date :
2019-10-09
Keyword(s) :
institut fiourier
CNRS
Grenoble
Rencontres du GDR AFHP 2019
systèmes
espaces deHilbert
fonctions analytiques
CNRS
Grenoble
Rencontres du GDR AFHP 2019
systèmes
espaces deHilbert
fonctions analytiques
HAL domain(s) :
Mathématiques [math]
English abstract : [en]
Dans les espaces de Banach de dimension infinie, la notion de base de Schauder est classique et bien étudi ée. Elle permet de représenter tout élément de l’espace comme une série des éléments de la ...
Show more >Dans les espaces de Banach de dimension infinie, la notion de base de Schauder est classique et bien étudi ée. Elle permet de représenter tout élément de l’espace comme une série des éléments de la base de Schauder. Si on omet l’unicité des coefficients dans la représentation, alors on obtient la notion de systèmes représentant. Dans cet exposé, nous allons discuter le cas des systèmes représentant formés de noyaux reproduisants dans les espaces de Hilbert de fonctions analytiques, et en particulier dans l’espace de Hardy du disque unité. Cet exposé sera basé sur un travail en collaboration avec L.H. Khoi et P. Lefèvre, ainsi que sur article récent de Speranski-Terekhin.Show less >
Show more >Dans les espaces de Banach de dimension infinie, la notion de base de Schauder est classique et bien étudi ée. Elle permet de représenter tout élément de l’espace comme une série des éléments de la base de Schauder. Si on omet l’unicité des coefficients dans la représentation, alors on obtient la notion de systèmes représentant. Dans cet exposé, nous allons discuter le cas des systèmes représentant formés de noyaux reproduisants dans les espaces de Hilbert de fonctions analytiques, et en particulier dans l’espace de Hardy du disque unité. Cet exposé sera basé sur un travail en collaboration avec L.H. Khoi et P. Lefèvre, ainsi que sur article récent de Speranski-Terekhin.Show less >
Language :
Français
Collections :
Source :
Files
- document
- Open access
- Access the document
- fricain_gdrafhp_09102019_hal.mp4
- Open access
- Access the document