A combined finite volume - finite element ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
A combined finite volume - finite element scheme for a low-Mach system involving a Joule term
Auteur(s) :
Calgaro, Caterina [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Colin, Claire [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Creusé, Emmanuel [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire de Mathématiques et leurs Applications de Valenciennes - EA 4015 [LAMAV]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Colin, Claire [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Creusé, Emmanuel [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire de Mathématiques et leurs Applications de Valenciennes - EA 4015 [LAMAV]
Titre de la revue :
AIMS Mathematics
Pagination :
311-331
Éditeur :
AIMS Press
Date de publication :
2020
Discipline(s) HAL :
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
In this paper, we propose a combined finite volume-finite element scheme, for the resolution of a specific low-Mach model expressed in the velocity, pressure and temperature variables. The dynamic viscosity of the fluid ...
Lire la suite >In this paper, we propose a combined finite volume-finite element scheme, for the resolution of a specific low-Mach model expressed in the velocity, pressure and temperature variables. The dynamic viscosity of the fluid is given by an explicit function of the temperature, leading to the presence of a so-called Joule term in the mass conservation equation. First, we prove a discrete maximum principle for the temperature. Second, the numerical fluxes defined for the finite volume computation of the temperature are efficiently derived from the discrete finite element velocity field obtained by the resolution of the momentum equation. Several numerical tests are presented to illustrate our theoretical results and to underline the efficiency of the scheme in term of convergence rates.Lire moins >
Lire la suite >In this paper, we propose a combined finite volume-finite element scheme, for the resolution of a specific low-Mach model expressed in the velocity, pressure and temperature variables. The dynamic viscosity of the fluid is given by an explicit function of the temperature, leading to the presence of a so-called Joule term in the mass conservation equation. First, we prove a discrete maximum principle for the temperature. Second, the numerical fluxes defined for the finite volume computation of the temperature are efficiently derived from the discrete finite element velocity field obtained by the resolution of the momentum equation. Several numerical tests are presented to illustrate our theoretical results and to underline the efficiency of the scheme in term of convergence rates.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- CCC-2019-10-25_revision-hal.pdf
- Accès libre
- Accéder au document
- math.2020021
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- CCC-2019-10-25_revision-hal.pdf
- Accès libre
- Accéder au document