A Microscopic Derivation of Coupled SPDE's ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Title :
A Microscopic Derivation of Coupled SPDE's with a KPZ Flavor
Author(s) :
Ahmed, Ragaa [Auteur]
Instituto Superior Técnico
Bernardin, Cedric [Auteur]
Laboratoire Jean Alexandre Dieudonné [LJAD]
Gonçalves, Patricia [Auteur]
Instituto Superior Técnico [IST / Técnico Lisboa]
Simon, Marielle [Auteur]
Systèmes de particules et systèmes dynamiques [Paradyse]
Instituto Superior Técnico
Bernardin, Cedric [Auteur]
Laboratoire Jean Alexandre Dieudonné [LJAD]
Gonçalves, Patricia [Auteur]
Instituto Superior Técnico [IST / Técnico Lisboa]
Simon, Marielle [Auteur]
Systèmes de particules et systèmes dynamiques [Paradyse]
Journal title :
Annales de l'Institut Henri Poincaré
Publication date :
2022
HAL domain(s) :
Mathématiques [math]/Probabilités [math.PR]
Mathématiques [math]/Physique mathématique [math-ph]
Physique [physics]/Physique mathématique [math-ph]
Physique [physics]/Matière Condensée [cond-mat]/Mécanique statistique [cond-mat.stat-mech]
Mathématiques [math]/Physique mathématique [math-ph]
Physique [physics]/Physique mathématique [math-ph]
Physique [physics]/Matière Condensée [cond-mat]/Mécanique statistique [cond-mat.stat-mech]
English abstract : [en]
We consider an interacting particles system composed of a Hamiltonian part and perturbed by a conservative stochastic noise so that the full system conserves two quantities: energy and volume. The Hamiltonian part is ...
Show more >We consider an interacting particles system composed of a Hamiltonian part and perturbed by a conservative stochastic noise so that the full system conserves two quantities: energy and volume. The Hamiltonian part is regulated by a scaling parameter vanishing in the limit. We study the form of the fluctuations of these quantities at equilibrium and derive coupled stochastic partial differential equations with a KPZ flavor.Show less >
Show more >We consider an interacting particles system composed of a Hamiltonian part and perturbed by a conservative stochastic noise so that the full system conserves two quantities: energy and volume. The Hamiltonian part is regulated by a scaling parameter vanishing in the limit. We study the form of the fluctuations of these quantities at equilibrium and derive coupled stochastic partial differential equations with a KPZ flavor.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Collections :
Source :
Files
- document
- Open access
- Access the document
- KPZ_exponential_18_september-MS.pdf
- Open access
- Access the document
- 1910.03996
- Open access
- Access the document
- document
- Open access
- Access the document
- KPZ_exponential_18_september-MS.pdf
- Open access
- Access the document