Light groups of isomorphisms of Banach ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Light groups of isomorphisms of Banach spaces and invariant LUR renormings
Auteur(s) :
Antunes, Leandro [Auteur]
Ferenczi, Valentin [Auteur]
Grivaux, Sophie [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Rosendal, Christian [Auteur]
Ferenczi, Valentin [Auteur]
Grivaux, Sophie [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Rosendal, Christian [Auteur]
Titre de la revue :
Pacific Journal of Mathematics
Pagination :
31-54
Éditeur :
Mathematical Sciences Publishers
Date de publication :
2019
ISSN :
0030-8730
Mot(s)-clé(s) en anglais :
groups of isomorphisms of Banach spaces
isometry groups
light groups
renormings of Banach spaces
LUR renormings
invariant renormings.
isometry groups
light groups
renormings of Banach spaces
LUR renormings
invariant renormings.
Discipline(s) HAL :
Mathématiques [math]
Mathématiques [math]/Analyse fonctionnelle [math.FA]
Mathématiques [math]/Analyse fonctionnelle [math.FA]
Résumé en anglais : [en]
Megrelishvili defines in [17] light groups of isomorphisms of a Banach space as the groups on which the Weak and Strong Operator Topologies coincide, and proves that every bounded group of isomorphisms of Banach spaces ...
Lire la suite >Megrelishvili defines in [17] light groups of isomorphisms of a Banach space as the groups on which the Weak and Strong Operator Topologies coincide, and proves that every bounded group of isomorphisms of Banach spaces with the Point of Continuity Property (PCP) is light. We investigate this concept for isomorphism groups G of classical Banach spaces X without the PCP, specially isometry groups, and relate it to the existence of G-invariant LUR or strictly convex renormings of X.Lire moins >
Lire la suite >Megrelishvili defines in [17] light groups of isomorphisms of a Banach space as the groups on which the Weak and Strong Operator Topologies coincide, and proves that every bounded group of isomorphisms of Banach spaces with the Point of Continuity Property (PCP) is light. We investigate this concept for isomorphism groups G of classical Banach spaces X without the PCP, specially isometry groups, and relate it to the existence of G-invariant LUR or strictly convex renormings of X.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- renorming-Pacific-final-version.pdf
- Accès libre
- Accéder au document
- 1711.03482
- Accès libre
- Accéder au document