Sequential Learning of Principal Curves: ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Sequential Learning of Principal Curves: Summarizing Data Streams on the Fly
Auteur(s) :
Guedj, Benjamin [Auteur]
MOdel for Data Analysis and Learning [MODAL]
Inria-CWI [Inria-CWI]
University College of London [London] [UCL]
Department of Computer science [University College of London] [UCL-CS]
Li, Le [Auteur]
Laboratoire Angevin de Recherche en Mathématiques [LAREMA]
MOdel for Data Analysis and Learning [MODAL]
Inria-CWI [Inria-CWI]
University College of London [London] [UCL]
Department of Computer science [University College of London] [UCL-CS]
Li, Le [Auteur]
Laboratoire Angevin de Recherche en Mathématiques [LAREMA]
Titre de la revue :
Entropy
Éditeur :
MDPI
Date de publication :
2021
ISSN :
1099-4300
Mot(s)-clé(s) en anglais :
sequential learning
principal curves
data streams
regret bounds
greedy algorithm
sleeping experts
principal curves
data streams
regret bounds
greedy algorithm
sleeping experts
Discipline(s) HAL :
Statistiques [stat]/Machine Learning [stat.ML]
Informatique [cs]/Apprentissage [cs.LG]
Mathématiques [math]/Statistiques [math.ST]
Informatique [cs]/Apprentissage [cs.LG]
Mathématiques [math]/Statistiques [math.ST]
Résumé en anglais : [en]
When confronted with massive data streams, summarizing data with dimension reduction methods such as PCA raises theoretical and algorithmic pitfalls. Principal curves act as a nonlinear generalization of PCA and the present ...
Lire la suite >When confronted with massive data streams, summarizing data with dimension reduction methods such as PCA raises theoretical and algorithmic pitfalls. Principal curves act as a nonlinear generalization of PCA and the present paper proposes a novel algorithm to automatically and sequentially learn principal curves from data streams. We show that our procedure is supported by regret bounds with optimal sublinear remainder terms. A greedy local search implementation (called \texttt{slpc}, for Sequential Learning Principal Curves) that incorporates both sleeping experts and multi-armed bandit ingredients is presented, along with its regret computation and performance on synthetic and real-life data.Lire moins >
Lire la suite >When confronted with massive data streams, summarizing data with dimension reduction methods such as PCA raises theoretical and algorithmic pitfalls. Principal curves act as a nonlinear generalization of PCA and the present paper proposes a novel algorithm to automatically and sequentially learn principal curves from data streams. We show that our procedure is supported by regret bounds with optimal sublinear remainder terms. A greedy local search implementation (called \texttt{slpc}, for Sequential Learning Principal Curves) that incorporates both sleeping experts and multi-armed bandit ingredients is presented, along with its regret computation and performance on synthetic and real-life data.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- main-pcurves.pdf
- Accès libre
- Accéder au document
- Accès libre
- Accéder au document