Derivation of the stochastic Burgers ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Title :
Derivation of the stochastic Burgers equation with Dirichlet boundary conditions from the WASEP
Author(s) :
Gonçalves, Patricia [Auteur]
Instituto Superior Técnico [IST / Técnico Lisboa]
Perkowski, Nicolas [Auteur]
Institut für Mathematik [Humboldt]
Simon, Marielle [Auteur]
Systèmes de particules et systèmes dynamiques [Paradyse]
Instituto Superior Técnico [IST / Técnico Lisboa]
Perkowski, Nicolas [Auteur]
Institut für Mathematik [Humboldt]
Simon, Marielle [Auteur]
Systèmes de particules et systèmes dynamiques [Paradyse]
Journal title :
Annales Henri Lebesgue
Publisher :
UFR de Mathématiques - IRMAR
Publication date :
2020
ISSN :
2644-9463
HAL domain(s) :
Mathématiques [math]/Probabilités [math.PR]
Mathématiques [math]/Physique mathématique [math-ph]
Mathématiques [math]/Physique mathématique [math-ph]
English abstract : [en]
We consider the weakly asymmetric simple exclusion process on the discrete space $\{1,...,n-1\}$, in contact with stochastic reservoirs, both with density $\rho\in{(0,1)}$ at the extremity points, and starting from the ...
Show more >We consider the weakly asymmetric simple exclusion process on the discrete space $\{1,...,n-1\}$, in contact with stochastic reservoirs, both with density $\rho\in{(0,1)}$ at the extremity points, and starting from the invariant state, namely the Bernoulli product measure of parameter $\rho$. Under time diffusive scaling $tn^2$ and for $\rho=\frac12$, when the asymmetry parameter is taken of order $1/ \sqrt n$, we prove that the density fluctuations at stationarity are macroscopically governed by the energy solution of the stochastic Burgers equation with Dirichlet boundary conditions, which is shown to be unique and different from the Cole-Hopf solution.Show less >
Show more >We consider the weakly asymmetric simple exclusion process on the discrete space $\{1,...,n-1\}$, in contact with stochastic reservoirs, both with density $\rho\in{(0,1)}$ at the extremity points, and starting from the invariant state, namely the Bernoulli product measure of parameter $\rho$. Under time diffusive scaling $tn^2$ and for $\rho=\frac12$, when the asymmetry parameter is taken of order $1/ \sqrt n$, we prove that the density fluctuations at stationarity are macroscopically governed by the energy solution of the stochastic Burgers equation with Dirichlet boundary conditions, which is shown to be unique and different from the Cole-Hopf solution.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Comment :
69 pages
Collections :
Source :
Files
- document
- Open access
- Access the document
- SBE_DBC_AHL_corrections-black.pdf
- Open access
- Access the document
- 1710.11011
- Open access
- Access the document