Evolutionary clustering for categorical ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Evolutionary clustering for categorical data using parametric links among multinomial mixture models
Author(s) :
Hasnat, Md Abul [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Velcin, Julien [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Entrepôts, Représentation et Ingénierie des Connaissances [ERIC]
Bonnevay, Stephane [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Jacques, Julien [Auteur]
MOdel for Data Analysis and Learning [MODAL]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Entrepôts, Représentation et Ingénierie des Connaissances [ERIC]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Velcin, Julien [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Entrepôts, Représentation et Ingénierie des Connaissances [ERIC]
Bonnevay, Stephane [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Jacques, Julien [Auteur]
MOdel for Data Analysis and Learning [MODAL]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Entrepôts, Représentation et Ingénierie des Connaissances [ERIC]
Journal title :
Econometrics and Statistics
Pages :
141-159
Publisher :
Elsevier
Publication date :
2017-07
ISSN :
2452-3062
English keyword(s) :
Twitter data
evolutionary clustering
multinomial distribution
model-based clustering
mixture model
evolutionary clustering
multinomial distribution
model-based clustering
mixture model
HAL domain(s) :
Mathématiques [math]/Statistiques [math.ST]
Informatique [cs]/Web
Informatique [cs]/Traitement du texte et du document
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Recherche d'information [cs.IR]
Informatique [cs]/Web
Informatique [cs]/Traitement du texte et du document
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Recherche d'information [cs.IR]
English abstract : [en]
In this paper, we propose a novel evolutionary clustering method for temporal categorical data based on parametric links among multinomial mixture models. Besides clustering, our main goal is to interpret the evolutions ...
Show more >In this paper, we propose a novel evolutionary clustering method for temporal categorical data based on parametric links among multinomial mixture models. Besides clustering, our main goal is to interpret the evolutions of clusters over time. To this aim, first we propose the formulation of a generalized model that establishes parametric links among two multinomial mixture. Afterward, different parametric sub-models are defined in order to model typical evolutions of the clustering structure. Model selection criteria allow to select the best sub-models and thus to guess the clustering evolution.For the experiments, first we evaluate the proposed method with synthetic temporal data. Next, we apply it to analyze the annotated social media data. Results show that the proposed method is better than the state-of-the-art based on the common evaluation metrics. Additionally, it can provide interpretation about the temporal evolution of the clusters.Show less >
Show more >In this paper, we propose a novel evolutionary clustering method for temporal categorical data based on parametric links among multinomial mixture models. Besides clustering, our main goal is to interpret the evolutions of clusters over time. To this aim, first we propose the formulation of a generalized model that establishes parametric links among two multinomial mixture. Afterward, different parametric sub-models are defined in order to model typical evolutions of the clustering structure. Model selection criteria allow to select the best sub-models and thus to guess the clustering evolution.For the experiments, first we evaluate the proposed method with synthetic temporal data. Next, we apply it to analyze the annotated social media data. Results show that the proposed method is better than the state-of-the-art based on the common evaluation metrics. Additionally, it can provide interpretation about the temporal evolution of the clusters.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- PLMM.pdf
- Open access
- Access the document
- PLMM.pdf
- Open access
- Access the document