Variational approximation of size-mass ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Variational approximation of size-mass energies for k-dimensional currents
Author(s) :
Chambolle, Antonin [Auteur]
Centre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP]
Ferrari, Luca Alberto Davide [Auteur]
Centre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP]
Merlet, Benoît [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Centre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP]
Ferrari, Luca Alberto Davide [Auteur]
Centre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP]
Merlet, Benoît [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
ESAIM: Control, Optimisation and Calculus of Variations
Pages :
39
Publisher :
EDP Sciences
Publication date :
2019-09-20
ISSN :
1292-8119
English keyword(s) :
Phase-field approximations
Gamma Convergence
Steiner Problem
Gamma Convergence
Steiner Problem
HAL domain(s) :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
English abstract : [en]
In this paper we produce a $Γ$-convergence result for a class of energies $F k ε,a$ modeled on the Ambrosio-Tortorelli functional. For the choice k = 1 we show that $F 1 ε,a Γ$-converges to a branched transportation energy ...
Show more >In this paper we produce a $Γ$-convergence result for a class of energies $F k ε,a$ modeled on the Ambrosio-Tortorelli functional. For the choice k = 1 we show that $F 1 ε,a Γ$-converges to a branched transportation energy whose cost per unit length is a function $f n−1 a$ depending on a parameter $a > 0$ and on the codimension n − 1. The limit cost f a (m) is bounded from below by 1 + m so that the limit functional controls the mass and the length of the limit object. In the limit a ↓ 0 we recover the Steiner energy. We then generalize the approach to any dimension and codimension. The limit objects are now k-currents with prescribed boundary, the limit functional controls both their masses and sizes. In the limit $a ↓ 0$, we recover the Plateau energy defined on k-currents, $k < n$. The energies $F k ε,a$ then can be used for the numerical treatment of the k-Plateau problem.Show less >
Show more >In this paper we produce a $Γ$-convergence result for a class of energies $F k ε,a$ modeled on the Ambrosio-Tortorelli functional. For the choice k = 1 we show that $F 1 ε,a Γ$-converges to a branched transportation energy whose cost per unit length is a function $f n−1 a$ depending on a parameter $a > 0$ and on the codimension n − 1. The limit cost f a (m) is bounded from below by 1 + m so that the limit functional controls the mass and the length of the limit object. In the limit a ↓ 0 we recover the Steiner energy. We then generalize the approach to any dimension and codimension. The limit objects are now k-currents with prescribed boundary, the limit functional controls both their masses and sizes. In the limit $a ↓ 0$, we recover the Plateau energy defined on k-currents, $k < n$. The energies $F k ε,a$ then can be used for the numerical treatment of the k-Plateau problem.Show less >
Language :
Anglais
Popular science :
Non
ANR Project :
Collections :
Source :
Files
- document
- Open access
- Access the document
- VarApproxOfkDimCurrents.pdf
- Open access
- Access the document
- 1710.08808
- Open access
- Access the document