Reflective modular forms and their applications
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Reflective modular forms and their applications
Auteur(s) :
Gritsenko, Valery A. [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Institut universitaire de France [IUF]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Institut universitaire de France [IUF]
Titre de la revue :
Usp.Mat.Nauk
Pagination :
53-122
Date de publication :
2018
Discipline(s) HAL :
Physique [physics]/Physique mathématique [math-ph]
Physique [physics]/Physique des Hautes Energies - Théorie [hep-th]
Physique [physics]/Physique des Hautes Energies - Théorie [hep-th]
Résumé en anglais : [en]
We prove that the existence of a strongly reflective modular form of a large weight implies that the Kodaira dimension of the corresponding modular variety is negative or, in some special case, it is equal to zero. Using ...
Lire la suite >We prove that the existence of a strongly reflective modular form of a large weight implies that the Kodaira dimension of the corresponding modular variety is negative or, in some special case, it is equal to zero. Using the Jacobi lifting we construct three towers of strongly reflective modular forms with the simplest possible divisor. In particular we obtain a Jacobi lifting construction of the Borcherds-Enriques modular form Phi_4 and Jacobi liftings of automorphic discriminants of the K\'ahler moduli of Del Pezzo surfaces constructed recently by Yoshikawa. We obtain also three modular varieties of dimension 4, 6 and 7 of Kodaira dimension 0.Lire moins >
Lire la suite >We prove that the existence of a strongly reflective modular form of a large weight implies that the Kodaira dimension of the corresponding modular variety is negative or, in some special case, it is equal to zero. Using the Jacobi lifting we construct three towers of strongly reflective modular forms with the simplest possible divisor. In particular we obtain a Jacobi lifting construction of the Borcherds-Enriques modular form Phi_4 and Jacobi liftings of automorphic discriminants of the K\'ahler moduli of Del Pezzo surfaces constructed recently by Yoshikawa. We obtain also three modular varieties of dimension 4, 6 and 7 of Kodaira dimension 0.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- 1005.3753
- Accès libre
- Accéder au document