The stability of compressible vortex sheets ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
The stability of compressible vortex sheets in two space dimensions
Author(s) :
Coulombel, Jean-François [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Secchi, Paolo [Auteur]
Università degli Studi di Brescia = University of Brescia [UniBs]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Secchi, Paolo [Auteur]
Università degli Studi di Brescia = University of Brescia [UniBs]
Journal title :
Indiana University Mathematics Journal
Pages :
941 - 1012
Publisher :
Indiana University Mathematics Journal
Publication date :
2004
ISSN :
0022-2518
HAL domain(s) :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
English abstract : [en]
We study the linear stability of compressible vortex sheets in two space dimensions. Under a supersonic condition that precludes violent instabilities, we prove an energy estimate for the linearized boundary value problem. ...
Show more >We study the linear stability of compressible vortex sheets in two space dimensions. Under a supersonic condition that precludes violent instabilities, we prove an energy estimate for the linearized boundary value problem. Since the problem is characteristic, the estimate we prove exhibits a loss of control on the trace of the solution. Furthermore, the failure of the uniform Kreiss-Lopatinskii condition yields a loss of derivatives in the energy estimate.Show less >
Show more >We study the linear stability of compressible vortex sheets in two space dimensions. Under a supersonic condition that precludes violent instabilities, we prove an energy estimate for the linearized boundary value problem. Since the problem is characteristic, the estimate we prove exhibits a loss of control on the trace of the solution. Furthermore, the failure of the uniform Kreiss-Lopatinskii condition yields a loss of derivatives in the energy estimate.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- Final.pdf
- Open access
- Access the document