Orbital stability via the energy-momentum ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Orbital stability via the energy-momentum method: the case of higher dimensional symmetry groups
Auteur(s) :
De Bievre, Stephan [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Méthodes quantitatives pour les modèles aléatoires de la physique [MEPHYSTO-POST]
Rota Nodari, Simona [Auteur]
Institut de Mathématiques de Bourgogne [Dijon] [IMB]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Méthodes quantitatives pour les modèles aléatoires de la physique [MEPHYSTO-POST]
Rota Nodari, Simona [Auteur]
Institut de Mathématiques de Bourgogne [Dijon] [IMB]
Titre de la revue :
Archive for Rational Mechanics and Analysis
Pagination :
233-284
Éditeur :
Springer Verlag
Date de publication :
2019-01-22
ISSN :
0003-9527
Mot(s)-clé(s) en anglais :
hamiltonian relative equilibria
standing waves
solitary waves
instabilities
systems
persistence
states
standing waves
solitary waves
instabilities
systems
persistence
states
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Systèmes dynamiques [math.DS]
Mathématiques [math]/Géométrie symplectique [math.SG]
Mathématiques [math]/Systèmes dynamiques [math.DS]
Mathématiques [math]/Géométrie symplectique [math.SG]
Résumé en anglais : [en]
We consider the orbital stability of relative equilibria of Hamiltonian dynamical systems on Banach spaces, in the presence of a multi-dimensional invariance group for the dynamics. We prove a persistence result for such ...
Lire la suite >We consider the orbital stability of relative equilibria of Hamiltonian dynamical systems on Banach spaces, in the presence of a multi-dimensional invariance group for the dynamics. We prove a persistence result for such relative equilibria, present a generalization of the Vakhitov-Kolokolov slope condition to this higher dimensional setting, and show how it allows to prove the local coercivity of the Lyapunov function, which in turn implies orbital stability. The method is applied to study the orbital stability of relative equilibria of nonlinear Schrödinger and Manakov equations. We provide a comparison of our approach to the one by Grillakis-Shatah-Strauss.Lire moins >
Lire la suite >We consider the orbital stability of relative equilibria of Hamiltonian dynamical systems on Banach spaces, in the presence of a multi-dimensional invariance group for the dynamics. We prove a persistence result for such relative equilibria, present a generalization of the Vakhitov-Kolokolov slope condition to this higher dimensional setting, and show how it allows to prove the local coercivity of the Lyapunov function, which in turn implies orbital stability. The method is applied to study the orbital stability of relative equilibria of nonlinear Schrödinger and Manakov equations. We provide a comparison of our approach to the one by Grillakis-Shatah-Strauss.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- energymomentum_revision_20180625hal.pdf
- Accès libre
- Accéder au document
- 1605.02523
- Accès libre
- Accéder au document