Barycentric Representation and Metric ...
Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Title :
Barycentric Representation and Metric Learning for Facial Expression Recognition
Author(s) :
Kacem, Anis [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Daoudi, Mohamed [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Alvarez-Paiva, Juan-Carlos [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Daoudi, Mohamed [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Alvarez-Paiva, Juan-Carlos [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Conference title :
The 13th IEEE International Conference on AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2018)
City :
Xi'an
Country :
Chine
Start date of the conference :
2018-05-15
HAL domain(s) :
Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
English abstract : [en]
— In this paper, we tackle the problem of dynamic facial expression recognition. An affine-invariant facial shape representation based on barycentric coordinates is proposed and related to the Grassmannian representation. ...
Show more >— In this paper, we tackle the problem of dynamic facial expression recognition. An affine-invariant facial shape representation based on barycentric coordinates is proposed and related to the Grassmannian representation. Unlike the latter, the barycentric representation allows us to work directly on Euclidean space and apply a metric learning algorithm to find a suitable metric that is discriminative enough to compare facial shapes under different expressions. Finally, we exploit the learned metric in a machinery combining a Dynamic Time Warping (DTW) phase and a pairwise proximity function SVM classifier for a rate-invariant classification of the facial sequences. Experiments on the AFEW dataset show the effectiveness of our approach while exploiting only geometric features.Show less >
Show more >— In this paper, we tackle the problem of dynamic facial expression recognition. An affine-invariant facial shape representation based on barycentric coordinates is proposed and related to the Grassmannian representation. Unlike the latter, the barycentric representation allows us to work directly on Euclidean space and apply a metric learning algorithm to find a suitable metric that is discriminative enough to compare facial shapes under different expressions. Finally, we exploit the learned metric in a machinery combining a Dynamic Time Warping (DTW) phase and a pairwise proximity function SVM classifier for a rate-invariant classification of the facial sequences. Experiments on the AFEW dataset show the effectiveness of our approach while exploiting only geometric features.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- fg2018-19.pdf
- Open access
- Access the document