Coercivity, hypocoercivity, exponential ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Coercivity, hypocoercivity, exponential time decay and simulations for discrete Fokker- Planck equations
Author(s) :
Dujardin, Guillaume [Auteur]
Systèmes de particules et systèmes dynamiques [Paradyse]
Hérau, Frédéric [Auteur]
Laboratoire de Mathématiques Jean Leray [LMJL]
Lafitte-Godillon, Pauline [Auteur]
Mathématiques et Informatique pour la Complexité et les Systèmes [MICS]
Fédération de Mathématiques de CentraleSupélec
Systèmes de particules et systèmes dynamiques [Paradyse]
Hérau, Frédéric [Auteur]
Laboratoire de Mathématiques Jean Leray [LMJL]
Lafitte-Godillon, Pauline [Auteur]
Mathématiques et Informatique pour la Complexité et les Systèmes [MICS]
Fédération de Mathématiques de CentraleSupélec
Journal title :
Numerische Mathematik
Publisher :
Springer Verlag
Publication date :
2020
ISSN :
0029-599X
HAL domain(s) :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
English abstract : [en]
In this article, we propose and study several discrete versions of homogeneous and inhomogeneous one-dimensional Fokker-Planck equations. In particular, for these dis-cretizations of velocity and space, we prove the ...
Show more >In this article, we propose and study several discrete versions of homogeneous and inhomogeneous one-dimensional Fokker-Planck equations. In particular, for these dis-cretizations of velocity and space, we prove the exponential convergence to the equilibrium of the solutions, for time-continuous equations as well as for time-discrete equations. Our method uses new types of discrete Poincaré inequalities for a " two-direction " discretization of the derivative in velocity. For the inhomogeneous problem, we adapt hypocoercive methods to the discrete cases.Show less >
Show more >In this article, we propose and study several discrete versions of homogeneous and inhomogeneous one-dimensional Fokker-Planck equations. In particular, for these dis-cretizations of velocity and space, we prove the exponential convergence to the equilibrium of the solutions, for time-continuous equations as well as for time-discrete equations. Our method uses new types of discrete Poincaré inequalities for a " two-direction " discretization of the derivative in velocity. For the inhomogeneous problem, we adapt hypocoercive methods to the discrete cases.Show less >
Language :
Anglais
Popular science :
Non
ANR Project :
Collections :
Source :
Files
- document
- Open access
- Access the document
- DHL.pdf
- Open access
- Access the document
- 1802.02173v1
- Open access
- Access the document