The Martin boundary of relatively hyperbolic ...
Type de document :
Pré-publication ou Document de travail
Titre :
The Martin boundary of relatively hyperbolic groups with virtually abelian parabolic subgroups
Auteur(s) :
Dussaule, Matthieu [Auteur]
Laboratoire de Mathématiques Jean Leray [LMJL]
Gekhtman, Ilya [Auteur]
Gerasimov, Victor [Auteur]
Potyagailo, Leonid [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire de Mathématiques Jean Leray [LMJL]
Gekhtman, Ilya [Auteur]
Gerasimov, Victor [Auteur]
Potyagailo, Leonid [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Discipline(s) HAL :
Mathématiques [math]/Théorie des groupes [math.GR]
Mathématiques [math]/Topologie géométrique [math.GT]
Mathématiques [math]/Systèmes dynamiques [math.DS]
Mathématiques [math]/Probabilités [math.PR]
Mathématiques [math]/Topologie géométrique [math.GT]
Mathématiques [math]/Systèmes dynamiques [math.DS]
Mathématiques [math]/Probabilités [math.PR]
Résumé en anglais : [en]
Given a probability measure on a finitely generated group, its Martin boundary is a way to compactify the group using the Green's function of the corresponding random walk. We give a complete topological characterization ...
Lire la suite >Given a probability measure on a finitely generated group, its Martin boundary is a way to compactify the group using the Green's function of the corresponding random walk. We give a complete topological characterization of the Martin boundary of finitely supported random walks on relatively hyperbolic groups with virtually abelian parabolic subgroups. In particular, in the case of nonuniform lattices in the real hyperbolic space H n , we show that the Martin boundary coincides with the CAT (0) boundary of the truncated space, and thus when n = 3, is homeomorphic to the Sierpinski carpet.Lire moins >
Lire la suite >Given a probability measure on a finitely generated group, its Martin boundary is a way to compactify the group using the Green's function of the corresponding random walk. We give a complete topological characterization of the Martin boundary of finitely supported random walks on relatively hyperbolic groups with virtually abelian parabolic subgroups. In particular, in the case of nonuniform lattices in the real hyperbolic space H n , we show that the Martin boundary coincides with the CAT (0) boundary of the truncated space, and thus when n = 3, is homeomorphic to the Sierpinski carpet.Lire moins >
Langue :
Anglais
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- rel_hyp_groups.pdf
- Accès libre
- Accéder au document
- 1711.11307
- Accès libre
- Accéder au document