KAM POUR L' ÉQUATION DES ONDES NON LINÉAIRE ...
Document type :
Pré-publication ou Document de travail
Title :
KAM POUR L' ÉQUATION DES ONDES NON LINÉAIRE SUR LE CERCLE: SOLUTION DE FAIBLE AMPLITIUDE
Author(s) :
HAL domain(s) :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
English abstract : [en]
In this paper we consider the nonlinear wave equation on the circle:\begin{equation} \nonumberu_{tt} - u_{xx} + m u = g(x,u), \quad t \in \mathbb{R},\: x \in \mathbb{S}^1,\end{equation}where $m \in [1,2]$ is a mass and ...
Show more >In this paper we consider the nonlinear wave equation on the circle:\begin{equation} \nonumberu_{tt} - u_{xx} + m u = g(x,u), \quad t \in \mathbb{R},\: x \in \mathbb{S}^1,\end{equation}where $m \in [1,2]$ is a mass and $g(x,u)=4u^3+ O(u^4)$. This equation will be treated as a perturbation of the integrable Hamiltonian:\begin{equation} \tag{$\ast$} \label{first equation}u_t= v, \quad v_t = - u_{xx} + m u.\end{equation}Near the origin and for generic $m$, we prove the existence of small amplitude quasi-periodic solutions close to the solution of the linear equation\eqref{first equation}. For the proof we use an abstract KAM theorem in infinite dimension and a Birkhoff normal form result.Show less >
Show more >In this paper we consider the nonlinear wave equation on the circle:\begin{equation} \nonumberu_{tt} - u_{xx} + m u = g(x,u), \quad t \in \mathbb{R},\: x \in \mathbb{S}^1,\end{equation}where $m \in [1,2]$ is a mass and $g(x,u)=4u^3+ O(u^4)$. This equation will be treated as a perturbation of the integrable Hamiltonian:\begin{equation} \tag{$\ast$} \label{first equation}u_t= v, \quad v_t = - u_{xx} + m u.\end{equation}Near the origin and for generic $m$, we prove the existence of small amplitude quasi-periodic solutions close to the solution of the linear equation\eqref{first equation}. For the proof we use an abstract KAM theorem in infinite dimension and a Birkhoff normal form result.Show less >
Language :
Anglais
Collections :
Source :
Files
- document
- Open access
- Access the document
- KAM%20for%20NLW.pdf
- Open access
- Access the document
- 1712.01597
- Open access
- Access the document