Design and analysis of a finite volume ...
Document type :
Communication dans un congrès avec actes
Title :
Design and analysis of a finite volume scheme for a concrete carbonation model
Author(s) :
Chainais-Hillairet, Claire [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Zurek, Antoine [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Merlet, Benoît [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Reliable numerical approximations of dissipative systems [RAPSODI]
Zurek, Antoine [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Merlet, Benoît [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Conference title :
FVCA8 2017 - International Conference on Finite Volumes for Complex Applications VIII
City :
Lille
Country :
France
Start date of the conference :
2017-06-12
Journal title :
Springer Proceedings in Mathematics & Statistics
English keyword(s) :
convergence analysis
Finite volume scheme
free-boundary system MSC (2010): 65M08
65N08
35Q30
Finite volume scheme
free-boundary system MSC (2010): 65M08
65N08
35Q30
HAL domain(s) :
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]
Mathématiques [math]
English abstract : [en]
In this paper we introduce a finite volume scheme for a concrete carbonation model proposed by Aiki and Muntean in [ Aiki, Muntean, Adv. Math. Sci. Appl. 19 (2009)]. It consists in a Euler discretisation in time and a ...
Show more >In this paper we introduce a finite volume scheme for a concrete carbonation model proposed by Aiki and Muntean in [ Aiki, Muntean, Adv. Math. Sci. Appl. 19 (2009)]. It consists in a Euler discretisation in time and a Scharfetter-Gummel discretisation in space. We give here some hints for the proof of the convergence of the scheme and show numerical experiments.Show less >
Show more >In this paper we introduce a finite volume scheme for a concrete carbonation model proposed by Aiki and Muntean in [ Aiki, Muntean, Adv. Math. Sci. Appl. 19 (2009)]. It consists in a Euler discretisation in time and a Scharfetter-Gummel discretisation in space. We give here some hints for the proof of the convergence of the scheme and show numerical experiments.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- Proceeding_FVCA8_ChainaisMerletZurek.pdf
- Open access
- Access the document
- Proceeding_FVCA8_ChainaisMerletZurek.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- Proceeding_FVCA8_ChainaisMerletZurek.pdf
- Open access
- Access the document