Stability analysis of a Vlasov-Wave system ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Stability analysis of a Vlasov-Wave system describing particles interacting with their environment
Author(s) :
De Bievre, Stephan [Auteur]
Méthodes quantitatives pour les modèles aléatoires de la physique [MEPHYSTO-POST]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Goudon, Thierry [Auteur]
Laboratoire Jean Alexandre Dieudonné [LJAD]
COmplex Flows For Energy and Environment [COFFEE]
Vavasseur, Arthur [Auteur]
Laboratoire Jean Alexandre Dieudonné [LJAD]
COmplex Flows For Energy and Environment [COFFEE]
Méthodes quantitatives pour les modèles aléatoires de la physique [MEPHYSTO-POST]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Goudon, Thierry [Auteur]
Laboratoire Jean Alexandre Dieudonné [LJAD]
COmplex Flows For Energy and Environment [COFFEE]
Vavasseur, Arthur [Auteur]
Laboratoire Jean Alexandre Dieudonné [LJAD]
COmplex Flows For Energy and Environment [COFFEE]
Journal title :
Journal of Differential Equations
Pages :
7069-7093
Publisher :
Elsevier
Publication date :
2018-06-15
ISSN :
0022-0396
English keyword(s) :
Vlasov–like equations
Dynamical stability
Inelastic Lorentz gas
Interacting particles
Dynamical stability
Inelastic Lorentz gas
Interacting particles
HAL domain(s) :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
English abstract : [en]
We study a kinetic equation of the Vlasov-Wave type, which arises in the description of the behaviour of a large number of particles interacting weakly with an environment, composed of an infinite collection of local ...
Show more >We study a kinetic equation of the Vlasov-Wave type, which arises in the description of the behaviour of a large number of particles interacting weakly with an environment, composed of an infinite collection of local vibrational degrees of freedom, modeled by wave equations. We use variational techniques to establish the existence of large families of stationary states for this system, and analyze their stability.Show less >
Show more >We study a kinetic equation of the Vlasov-Wave type, which arises in the description of the behaviour of a large number of particles interacting weakly with an environment, composed of an infinite collection of local vibrational degrees of freedom, modeled by wave equations. We use variational techniques to establish the existence of large families of stationary states for this system, and analyze their stability.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- Stability_VW_July.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- Stability_VW_July.pdf
- Open access
- Access the document