A Novel Space-Time Representation on the ...
Type de document :
Communication dans un congrès avec actes
Titre :
A Novel Space-Time Representation on the Positive Semidefinite Cone for Facial Expression Recognition
Auteur(s) :
Kacem, Anis [Auteur]
Modeling and Analysis of Static and Dynamic Shapes [3D-SAM]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Daoudi, Mohamed [Auteur]
Modeling and Analysis of Static and Dynamic Shapes [3D-SAM]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Ecole nationale supérieure Mines-Télécom Lille Douai [IMT Nord Europe]
Amor, Boulbaba [Auteur]
Modeling and Analysis of Static and Dynamic Shapes [3D-SAM]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Carlos Alvarez-Paiva, Juan [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Modeling and Analysis of Static and Dynamic Shapes [3D-SAM]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Daoudi, Mohamed [Auteur]
Modeling and Analysis of Static and Dynamic Shapes [3D-SAM]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Ecole nationale supérieure Mines-Télécom Lille Douai [IMT Nord Europe]
Amor, Boulbaba [Auteur]
Modeling and Analysis of Static and Dynamic Shapes [3D-SAM]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Carlos Alvarez-Paiva, Juan [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la manifestation scientifique :
International Conference on Computer Vision
Ville :
Venice
Pays :
Italie
Date de début de la manifestation scientifique :
2017-10-22
Date de publication :
2017-10-22
Discipline(s) HAL :
Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
Résumé en anglais : [en]
In this paper, we study the problem of facial expression recognition using a novel space-time geometric representation. We describe the temporal evolution of facial landmarks as parametrized trajectories on the Riemannian ...
Lire la suite >In this paper, we study the problem of facial expression recognition using a novel space-time geometric representation. We describe the temporal evolution of facial landmarks as parametrized trajectories on the Riemannian man-ifold of positive semidefinite matrices of fixed-rank. Our representation has the advantage to bring naturally a second desirable quantity when comparing shapes – the spatial covariance – in addition to the conventional affine-shape representation. We derive then geometric and computational tools for rate-invariant analysis and adaptive re-sampling of trajectories, grounding on the Riemannian geometry of the manifold. Specifically, our approach involves three steps: 1) facial landmarks are first mapped into the Riemannian manifold of positive semidefinite matrices of rank 2, to build time-parameterized trajectories; 2) a temporal alignment is performed on the trajectories, providing a geometry-aware (dis-)similarity measure between them; 3) finally, pairwise proximity function SVM (ppfSVM) is used to classify them, incorporating the latter (dis-)similarity measure into the kernel function. We show the effectiveness of the proposed approach on four publicly available benchmarks (CK+, MMI, Oulu-CASIA, and AFEW). The results of the proposed approach are comparable to or better than the state-of-the-art methods when involving only facial landmarks.Lire moins >
Lire la suite >In this paper, we study the problem of facial expression recognition using a novel space-time geometric representation. We describe the temporal evolution of facial landmarks as parametrized trajectories on the Riemannian man-ifold of positive semidefinite matrices of fixed-rank. Our representation has the advantage to bring naturally a second desirable quantity when comparing shapes – the spatial covariance – in addition to the conventional affine-shape representation. We derive then geometric and computational tools for rate-invariant analysis and adaptive re-sampling of trajectories, grounding on the Riemannian geometry of the manifold. Specifically, our approach involves three steps: 1) facial landmarks are first mapped into the Riemannian manifold of positive semidefinite matrices of rank 2, to build time-parameterized trajectories; 2) a temporal alignment is performed on the trajectories, providing a geometry-aware (dis-)similarity measure between them; 3) finally, pairwise proximity function SVM (ppfSVM) is used to classify them, incorporating the latter (dis-)similarity measure into the kernel function. We show the effectiveness of the proposed approach on four publicly available benchmarks (CK+, MMI, Oulu-CASIA, and AFEW). The results of the proposed approach are comparable to or better than the state-of-the-art methods when involving only facial landmarks.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- space-time-representation-iccv2017.pdf
- Accès libre
- Accéder au document