Clustering categorical functional data ...
Type de document :
Autre communication scientifique (congrès sans actes - poster - séminaire...)
Titre :
Clustering categorical functional data Application to medical discharge letters Medical discharge letters
Auteur(s) :
Vandewalle, Vincent [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
MOdel for Data Analysis and Learning [MODAL]
Preda, Cristian [Auteur]
MOdel for Data Analysis and Learning [MODAL]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
MOdel for Data Analysis and Learning [MODAL]
Preda, Cristian [Auteur]
MOdel for Data Analysis and Learning [MODAL]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la manifestation scientifique :
Working Group on Model-Based Clustering Summer Session: Paris, July 17-23, 2016
Ville :
Paris
Pays :
France
Date de début de la manifestation scientifique :
2016-07-17
Date de publication :
2016
Discipline(s) HAL :
Statistiques [stat]
Résumé en anglais : [en]
Categorical functional data represented by paths of a stochastic jump process are considered for clustering. For paths of the same length, the extension of the multiple correspondence analysis allows the use of well-known ...
Lire la suite >Categorical functional data represented by paths of a stochastic jump process are considered for clustering. For paths of the same length, the extension of the multiple correspondence analysis allows the use of well-known methods for clustering finite dimensional data. When the paths are of different lengths, the analysis is more complex. In this case, for Markov models we propose an EM algorithm to estimate a mixture of Markov processes. A simulation study as well as a real application on hospital stays will be presented.Lire moins >
Lire la suite >Categorical functional data represented by paths of a stochastic jump process are considered for clustering. For paths of the same length, the extension of the multiple correspondence analysis allows the use of well-known methods for clustering finite dimensional data. When the paths are of different lengths, the analysis is more complex. In this case, for Markov models we propose an EM algorithm to estimate a mixture of Markov processes. A simulation study as well as a real application on hospital stays will be presented.Lire moins >
Langue :
Anglais
Comité de lecture :
Non
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- poster.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- poster.pdf
- Accès libre
- Accéder au document