Multiple positive solutions of the stationary ...
Type de document :
Pré-publication ou Document de travail
Titre :
Multiple positive solutions of the stationary Keller-Segel system
Auteur(s) :
Bonheure, Denis [Auteur]
Département de mathématiques Université Libre de Bruxelles
Quantitative methods for stochastic models in physics [MEPHYSTO]
Casteras, Jean-Baptiste [Auteur]
Quantitative methods for stochastic models in physics [MEPHYSTO]
Département de Mathématique [Bruxelles] [ULB]
Noris, Benedetta [Auteur]
Département de mathématiques Université Libre de Bruxelles
Département de mathématiques Université Libre de Bruxelles
Quantitative methods for stochastic models in physics [MEPHYSTO]
Casteras, Jean-Baptiste [Auteur]
Quantitative methods for stochastic models in physics [MEPHYSTO]
Département de Mathématique [Bruxelles] [ULB]
Noris, Benedetta [Auteur]
Département de mathématiques Université Libre de Bruxelles
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
We consider the stationary Keller-Segel equation \begin{equation*} \begin{cases} -\Delta v+v=\lambda e^v, \quad v>0 \quad & \text{in }\Omega,\\ \partial_\nu v=0 &\text{on } \partial \Omega, \end{cases} \end{equation*} where ...
Lire la suite >We consider the stationary Keller-Segel equation \begin{equation*} \begin{cases} -\Delta v+v=\lambda e^v, \quad v>0 \quad & \text{in }\Omega,\\ \partial_\nu v=0 &\text{on } \partial \Omega, \end{cases} \end{equation*} where $\Omega$ is a ball. In the regime $\lambda\to 0$, we study the radial bifurcations and we construct radial solutions by a gluing variational method. For any given natural positive number $n$, we build a solution having multiple layers at $r_1,\ldots,r_n$ by which we mean that the solutions concentrate on the spheres of radii $r_i$ as $\lambda\to 0$ (for all $i=1,\ldots,n$). A remarkable fact is that, in opposition to previous known results, the layers of the solutions do not accumulate to the boundary of $\Omega$ as $\lambda\to 0$. Instead they satisfy an optimal partition problem in the limit.Lire moins >
Lire la suite >We consider the stationary Keller-Segel equation \begin{equation*} \begin{cases} -\Delta v+v=\lambda e^v, \quad v>0 \quad & \text{in }\Omega,\\ \partial_\nu v=0 &\text{on } \partial \Omega, \end{cases} \end{equation*} where $\Omega$ is a ball. In the regime $\lambda\to 0$, we study the radial bifurcations and we construct radial solutions by a gluing variational method. For any given natural positive number $n$, we build a solution having multiple layers at $r_1,\ldots,r_n$ by which we mean that the solutions concentrate on the spheres of radii $r_i$ as $\lambda\to 0$ (for all $i=1,\ldots,n$). A remarkable fact is that, in opposition to previous known results, the layers of the solutions do not accumulate to the boundary of $\Omega$ as $\lambda\to 0$. Instead they satisfy an optimal partition problem in the limit.Lire moins >
Langue :
Anglais
Commentaire :
33 pages
Collections :
Source :
Fichiers
- 1603.07374
- Accès libre
- Accéder au document