Singular decompositions of a cap-product
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Singular decompositions of a cap-product
Auteur(s) :
Chataur, David [Auteur]
Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352 UPJV [LAMFA]
Saralegi-Aranguren, Martintxo [Auteur]
Laboratoire de Mathématiques de Lens [LML]
Tanré, Daniel [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352 UPJV [LAMFA]
Saralegi-Aranguren, Martintxo [Auteur]
Laboratoire de Mathématiques de Lens [LML]
Tanré, Daniel [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Proceedings of the American Mathematical Society
Pagination :
3645-3656
Éditeur :
American Mathematical Society
Date de publication :
2017
ISSN :
0002-9939
Discipline(s) HAL :
Mathématiques [math]/Topologie algébrique [math.AT]
Résumé en anglais : [en]
In the case of a compact orientable pseudomanifold, a well-known theorem of M. Goresky and R. MacPherson says that the cap-product with a fundamental class factorizes through theintersection homology groups. In this work, ...
Lire la suite >In the case of a compact orientable pseudomanifold, a well-known theorem of M. Goresky and R. MacPherson says that the cap-product with a fundamental class factorizes through theintersection homology groups. In this work, we show that this classical cap-product is compatiblewith a cap-product in intersection (co)-homology, that we have previously introduced. As a corollary,for any commutative ring of coefficients, the existence of a classical Poincar´e duality isomorphism isequivalent to the existence of an isomorphism between the intersection homology groups correspondingto the zero and the top perversities. Our results answer a question asked by G. Friedman.Lire moins >
Lire la suite >In the case of a compact orientable pseudomanifold, a well-known theorem of M. Goresky and R. MacPherson says that the cap-product with a fundamental class factorizes through theintersection homology groups. In this work, we show that this classical cap-product is compatiblewith a cap-product in intersection (co)-homology, that we have previously introduced. As a corollary,for any commutative ring of coefficients, the existence of a classical Poincar´e duality isomorphism isequivalent to the existence of an isomorphism between the intersection homology groups correspondingto the zero and the top perversities. Our results answer a question asked by G. Friedman.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- FactorArxiv.pdf
- Accès libre
- Accéder au document
- 1606.04233
- Accès libre
- Accéder au document