Estimating the Division Kernel of a ...
Type de document :
Pré-publication ou Document de travail
Titre :
Estimating the Division Kernel of a Size-Structured Population
Auteur(s) :
Mot(s)-clé(s) en anglais :
random size-structured population
nonparametric estimation
optimal rate
penalization
adaptive estimator
Goldenshluger-Lepski's method
division kernel
nonparametric estimation
optimal rate
penalization
adaptive estimator
Goldenshluger-Lepski's method
division kernel
Discipline(s) HAL :
Mathématiques [math]/Statistiques [math.ST]
Mathématiques [math]/Probabilités [math.PR]
Mathématiques [math]/Probabilités [math.PR]
Résumé en anglais : [en]
We consider a size-structured population describing the cell divisions. The cell population is described by an empirical measure and we observe the divisions in the continuous time interval [0, T ]. We address here the ...
Lire la suite >We consider a size-structured population describing the cell divisions. The cell population is described by an empirical measure and we observe the divisions in the continuous time interval [0, T ]. We address here the problem of estimating the division kernel h (or fragmentation kernel) in case of complete data. An adaptive estimator of h is constructed based on a kernel function K with a fully data-driven bandwidth selection method. We obtain an oracle inequality and an exponential convergence rate, for which optimality is considered.Lire moins >
Lire la suite >We consider a size-structured population describing the cell divisions. The cell population is described by an empirical measure and we observe the divisions in the continuous time interval [0, T ]. We address here the problem of estimating the division kernel h (or fragmentation kernel) in case of complete data. An adaptive estimator of h is constructed based on a kernel function K with a fully data-driven bandwidth selection method. We obtain an oracle inequality and an exponential convergence rate, for which optimality is considered.Lire moins >
Langue :
Anglais
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Estimating_division_kernel_v4.pdf
- Accès libre
- Accéder au document
- 1509.02872
- Accès libre
- Accéder au document