Error estimate for time-explicit finite ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Error estimate for time-explicit finite volume approximation of strong solutions to systems of conservation laws
Auteur(s) :
Cancès, Clément [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Mathis, Hélène [Auteur]
Laboratoire de Mathématiques Jean Leray [LMJL]
Seguin, Nicolas [Auteur]
Laboratoire de Mathématiques Jean Leray [LMJL]
Reliable numerical approximations of dissipative systems [RAPSODI]
Mathis, Hélène [Auteur]
Laboratoire de Mathématiques Jean Leray [LMJL]
Seguin, Nicolas [Auteur]
Laboratoire de Mathématiques Jean Leray [LMJL]
Titre de la revue :
SIAM Journal on Numerical Analysis
Pagination :
1263-1287
Éditeur :
Society for Industrial and Applied Mathematics
Date de publication :
2016
ISSN :
0036-1429
Mot(s)-clé(s) en anglais :
error estimates
finite volume schemes
relative entropy
hyperbolic systems
strong solutions
finite volume schemes
relative entropy
hyperbolic systems
strong solutions
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Analyse numérique [math.NA]
Résumé en anglais : [en]
We study the finite volume approximation of strong solutions to nonlinear systems of conservation laws. We focus on time-explicit schemes on unstructured meshes, with entropy satisfying numerical fluxes. The numerical ...
Lire la suite >We study the finite volume approximation of strong solutions to nonlinear systems of conservation laws. We focus on time-explicit schemes on unstructured meshes, with entropy satisfying numerical fluxes. The numerical entropy dissipation is quantified at each interface of the mesh, which enables to prove a weak–BV estimate for the numerical approximation under a strengthen CFL condition. Then we derive error estimates in the multidimensional case, using the relative entropy between the strong solution and its finite volume approximation. The error terms are carefully studied, leading to a classical $h^1/4$ estimate in $L^2$ under this strengthen CFL condition.Lire moins >
Lire la suite >We study the finite volume approximation of strong solutions to nonlinear systems of conservation laws. We focus on time-explicit schemes on unstructured meshes, with entropy satisfying numerical fluxes. The numerical entropy dissipation is quantified at each interface of the mesh, which enables to prove a weak–BV estimate for the numerical approximation under a strengthen CFL condition. Then we derive error estimates in the multidimensional case, using the relative entropy between the strong solution and its finite volume approximation. The error terms are carefully studied, leading to a classical $h^1/4$ estimate in $L^2$ under this strengthen CFL condition.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Entrel-hal.pdf
- Accès libre
- Accéder au document
- 1602.02128
- Accès libre
- Accéder au document