Simultaneous Clustering and Model Selection ...
Document type :
Communication dans un congrès avec actes
Title :
Simultaneous Clustering and Model Selection for Multinomial Distribution: A Comparative Study
Author(s) :
Hasnat, Md Abul [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Velcin, Julien [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Bonnevay, Stéphane [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Jacques, Julien [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
MOdel for Data Analysis and Learning [MODAL]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Velcin, Julien [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Bonnevay, Stéphane [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Jacques, Julien [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
MOdel for Data Analysis and Learning [MODAL]
Conference title :
Intelligent Data Analysis
City :
Saint Etienne
Country :
France
Start date of the conference :
2015-10-22
HAL domain(s) :
Mathématiques [math]/Statistiques [math.ST]
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Apprentissage [cs.LG]
English abstract : [en]
In this paper, we study different discrete data clustering methods, which use the Model-Based Clustering (MBC) framework with the Multinomial distribution. Our study comprises several relevant issues, such as initialization, ...
Show more >In this paper, we study different discrete data clustering methods, which use the Model-Based Clustering (MBC) framework with the Multinomial distribution. Our study comprises several relevant issues, such as initialization, model estimation and model selection. Additionally, we propose a novel MBC method by efficiently combining the partitional and hierarchical clustering techniques. We conduct experiments on both synthetic and real data and evaluate the methods using accuracy, stability and computation time. Our study identifies appropriate strategies to be used for discrete data analysis with the MBC methods. Moreover, our proposed method is very competitive w.r.t. clustering accuracy and better w.r.t. stability and computation time.Show less >
Show more >In this paper, we study different discrete data clustering methods, which use the Model-Based Clustering (MBC) framework with the Multinomial distribution. Our study comprises several relevant issues, such as initialization, model estimation and model selection. Additionally, we propose a novel MBC method by efficiently combining the partitional and hierarchical clustering techniques. We conduct experiments on both synthetic and real data and evaluate the methods using accuracy, stability and computation time. Our study identifies appropriate strategies to be used for discrete data analysis with the MBC methods. Moreover, our proposed method is very competitive w.r.t. clustering accuracy and better w.r.t. stability and computation time.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- IDA_CR.pdf
- Open access
- Access the document