Simultaneous Clustering and Model Selection ...
Type de document :
Communication dans un congrès avec actes
Titre :
Simultaneous Clustering and Model Selection for Multinomial Distribution: A Comparative Study
Auteur(s) :
Hasnat, Md Abul [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Velcin, Julien [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Bonnevay, Stéphane [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Jacques, Julien [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
MOdel for Data Analysis and Learning [MODAL]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Velcin, Julien [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Bonnevay, Stéphane [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Jacques, Julien [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
MOdel for Data Analysis and Learning [MODAL]
Titre de la manifestation scientifique :
Intelligent Data Analysis
Ville :
Saint Etienne
Pays :
France
Date de début de la manifestation scientifique :
2015-10-22
Discipline(s) HAL :
Mathématiques [math]/Statistiques [math.ST]
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Apprentissage [cs.LG]
Résumé en anglais : [en]
In this paper, we study different discrete data clustering methods, which use the Model-Based Clustering (MBC) framework with the Multinomial distribution. Our study comprises several relevant issues, such as initialization, ...
Lire la suite >In this paper, we study different discrete data clustering methods, which use the Model-Based Clustering (MBC) framework with the Multinomial distribution. Our study comprises several relevant issues, such as initialization, model estimation and model selection. Additionally, we propose a novel MBC method by efficiently combining the partitional and hierarchical clustering techniques. We conduct experiments on both synthetic and real data and evaluate the methods using accuracy, stability and computation time. Our study identifies appropriate strategies to be used for discrete data analysis with the MBC methods. Moreover, our proposed method is very competitive w.r.t. clustering accuracy and better w.r.t. stability and computation time.Lire moins >
Lire la suite >In this paper, we study different discrete data clustering methods, which use the Model-Based Clustering (MBC) framework with the Multinomial distribution. Our study comprises several relevant issues, such as initialization, model estimation and model selection. Additionally, we propose a novel MBC method by efficiently combining the partitional and hierarchical clustering techniques. We conduct experiments on both synthetic and real data and evaluate the methods using accuracy, stability and computation time. Our study identifies appropriate strategies to be used for discrete data analysis with the MBC methods. Moreover, our proposed method is very competitive w.r.t. clustering accuracy and better w.r.t. stability and computation time.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- IDA_CR.pdf
- Accès libre
- Accéder au document