Quantitative equidistribution properties ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Quantitative equidistribution properties of toral eigenfunctions
Author(s) :
Hezari, Hamid [Auteur]
Department of Mathematics [Irvine]
Riviere, Gabriel [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Department of Mathematics [Irvine]
Riviere, Gabriel [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Journal of Spectral Theory
Publisher :
European Mathematical Society
Publication date :
2017-06-05
ISSN :
1664-039X
English keyword(s) :
Quantum ergodicity
Eigenfunctions of the Laplacian
Eigenfunctions of the Laplacian
HAL domain(s) :
Mathématiques [math]/Théorie spectrale [math.SP]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Physique mathématique [math-ph]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Physique mathématique [math-ph]
English abstract : [en]
In this note, we prove quantitative equidistribution properties for orthonor-mal bases of eigenfunctions of the Laplacian on the rational d-torus. We show that the rate of equidistribution of such eigenfunctions is polynomial. ...
Show more >In this note, we prove quantitative equidistribution properties for orthonor-mal bases of eigenfunctions of the Laplacian on the rational d-torus. We show that the rate of equidistribution of such eigenfunctions is polynomial. We also prove that equidistribution of eigenfunctions holds for symbols supported in balls with a radius shrinking at a polynomial rate.Show less >
Show more >In this note, we prove quantitative equidistribution properties for orthonor-mal bases of eigenfunctions of the Laplacian on the rational d-torus. We show that the rate of equidistribution of such eigenfunctions is polynomial. We also prove that equidistribution of eigenfunctions holds for symbols supported in balls with a radius shrinking at a polynomial rate.Show less >
Language :
Anglais
Popular science :
Non
Comment :
This article is based on the appendix of our previous preprint: arXiv:1411.4078. We have included improvements and have simplified the proofs (no semiclassical/microlocal analysis background is required).
Collections :
Source :
Files
- document
- Open access
- Access the document
- HezRiv2015-torus.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- HezRiv2015-torus.pdf
- Open access
- Access the document