Long time bounds for the periodic ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Long time bounds for the periodic Benjamin–Ono–BBM equation
Author(s) :
Journal title :
Nonlinear Analysis: Theory, Methods and Applications
Pages :
5010 - 5021
Publisher :
Elsevier
Publication date :
2009
ISSN :
0362-546X
English keyword(s) :
BO-BBM equation
KP equations
local and global well-posedness
long time bounds
KP equations
local and global well-posedness
long time bounds
HAL domain(s) :
Mathématiques [math]
English abstract : [en]
We consider the periodic Benjamin-Ono equation, regularized in the same manner the Benjamin-Bona-Mahony equation is found from the Korteweg-de Vries one, namely the equation $u_t + u_x + \alpha u u_x + \beta H(u_{xt})=0,$ ...
Show more >We consider the periodic Benjamin-Ono equation, regularized in the same manner the Benjamin-Bona-Mahony equation is found from the Korteweg-de Vries one, namely the equation $u_t + u_x + \alpha u u_x + \beta H(u_{xt})=0,$ where $H$ is the Hilbert transform, $\alpha$ the quotient between the characteristic waves amplitude and the depth of the waves and $\beta$ the quotient between this depth and the wavelength. We show that the solution, starting from an initial datum of size $\varepsilon$, remains smaller than $\varepsilon$ for a time scale of order $\left(\varepsilon^{-1}\frac{\beta}{\alpha}\right)^2$, whereas the local well-posedness gives only a time of order $\varepsilon ^{-1}\frac{\beta}{\alpha}$.Show less >
Show more >We consider the periodic Benjamin-Ono equation, regularized in the same manner the Benjamin-Bona-Mahony equation is found from the Korteweg-de Vries one, namely the equation $u_t + u_x + \alpha u u_x + \beta H(u_{xt})=0,$ where $H$ is the Hilbert transform, $\alpha$ the quotient between the characteristic waves amplitude and the depth of the waves and $\beta$ the quotient between this depth and the wavelength. We show that the solution, starting from an initial datum of size $\varepsilon$, remains smaller than $\varepsilon$ for a time scale of order $\left(\varepsilon^{-1}\frac{\beta}{\alpha}\right)^2$, whereas the local well-posedness gives only a time of order $\varepsilon ^{-1}\frac{\beta}{\alpha}$.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- 2009_03_NormBO_preprint.pdf
- Open access
- Access the document