On steady-state preserving spectral methods ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
On steady-state preserving spectral methods for homogeneous Boltzmann equations
Auteur(s) :
Filbet, Francis [Auteur]
Modélisation mathématique, calcul scientifique [MMCS]
Kinetic models AppLIed for Future of Fusion Energy [KALiFFE]
Pareschi, Lorenzo [Auteur]
Rey, Thomas [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Center for Scientific Computation and Mathematical Modeling [CSCAMM]
Modélisation mathématique, calcul scientifique [MMCS]
Kinetic models AppLIed for Future of Fusion Energy [KALiFFE]
Pareschi, Lorenzo [Auteur]
Rey, Thomas [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Center for Scientific Computation and Mathematical Modeling [CSCAMM]
Titre de la revue :
Comptes Rendus. Mathématique
Pagination :
309–314
Éditeur :
Académie des sciences (Paris)
Date de publication :
2015-04
ISSN :
1631-073X
Discipline(s) HAL :
Mathématiques [math]/Analyse numérique [math.NA]
Résumé en anglais : [en]
In this note, we present a general way to construct spectral methods for the collision operator of the Boltzmann equation which preserves exactly the Maxwellian steady state of the system. We show that the resulting method ...
Lire la suite >In this note, we present a general way to construct spectral methods for the collision operator of the Boltzmann equation which preserves exactly the Maxwellian steady state of the system. We show that the resulting method is able to approximate with spectral accuracy the solution uniformly in time.Lire moins >
Lire la suite >In this note, we present a general way to construct spectral methods for the collision operator of the Boltzmann equation which preserves exactly the Maxwellian steady state of the system. We show that the resulting method is able to approximate with spectral accuracy the solution uniformly in time.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet Européen :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- spectmod_v2.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- spectmod_v2.pdf
- Accès libre
- Accéder au document