A survey on Graph Deep Representation ...
Document type :
Communication dans un congrès avec actes
Permalink :
Title :
A survey on Graph Deep Representation Learning for Facial Expression Recognition
Author(s) :
Gueuret, Théo [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Sellami, Akrem [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Djeraba, Chaabane [Auteur]
Institut de Recherche sur les Composants logiciels et matériels pour l'Information et la Communication Avancée - UAR 3380 [IRCICA]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Sellami, Akrem [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Djeraba, Chaabane [Auteur]
Institut de Recherche sur les Composants logiciels et matériels pour l'Information et la Communication Avancée - UAR 3380 [IRCICA]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Conference title :
International Conference on Content-based Multimedia Indexing
City :
Reykjavík
Country :
Islande
Start date of the conference :
2024-09-18
English keyword(s) :
Facial Expression Recognition
Graph Representation Learning
Graph Representation Learning
HAL domain(s) :
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
English abstract : [en]
This comprehensive review delves deeply into the various methodologies applied to facial expression recognition (FER) through the lens of graph representation learning (GRL). Initially, we introduce the task of FER and the ...
Show more >This comprehensive review delves deeply into the various methodologies applied to facial expression recognition (FER) through the lens of graph representation learning (GRL). Initially, we introduce the task of FER and the concepts of graph representation and GRL. Afterward, we discuss some of the most prevalent and valuable databases for this task. We explore promising approaches for graph representation in FER, including graph diffusion, spatio-temporal graphs, and multi-stream architectures. Finally, we identify future research opportunities and provide concluding remarks.Show less >
Show more >This comprehensive review delves deeply into the various methodologies applied to facial expression recognition (FER) through the lens of graph representation learning (GRL). Initially, we introduce the task of FER and the concepts of graph representation and GRL. Afterward, we discuss some of the most prevalent and valuable databases for this task. We explore promising approaches for graph representation in FER, including graph diffusion, spatio-temporal graphs, and multi-stream architectures. Finally, we identify future research opportunities and provide concluding remarks.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Submission date :
2024-11-08T03:10:25Z
Files
- document
- Open access
- Access the document
- Article%20CBMI%20-%20final.PDF
- Open access
- Access the document