• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the Boundedness Problem for Higher-Order ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
DOI :
10.4230/LIPIcs.FSTTCS.2018.44
Title :
On the Boundedness Problem for Higher-Order Pushdown Vector Addition Systems
Author(s) :
Penelle, Vincent [Auteur]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Salvati, Sylvain [Auteur] refId
Linking Dynamic Data [LINKS]
Sutre, Grégoire [Auteur]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Conference title :
FSTTCS 2018 - 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
City :
Ahmedabad
Country :
Inde
Start date of the conference :
2018-12-10
Journal title :
LIPIcs
Publisher :
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
English keyword(s) :
Higher-order pushdown automata
Vector addition systems
Boundedness problem
Termination problem
Coverability problem
HAL domain(s) :
Informatique [cs]/Théorie et langage formel [cs.FL]
Informatique [cs]/Logique en informatique [cs.LO]
English abstract : [en]
Karp and Miller's algorithm is a well-known decision procedure that solves the termination and boundedness problems for vector addition systems with states (VASS), or equivalently Petri nets. This procedure was later ...
Show more >
Karp and Miller's algorithm is a well-known decision procedure that solves the termination and boundedness problems for vector addition systems with states (VASS), or equivalently Petri nets. This procedure was later extended to a general class of models, well-structured transition systems, and, more recently, to pushdown VASS. In this paper, we extend pushdown VASS to higher-order pushdown VASS (called HOPVASS), and we investigate whether an approach à la Karp and Miller can still be used to solve termination and boundedness.We provide a decidable characterisation of runs that can be iterated arbitrarily many times, which is the main ingredient of Karp and Miller's approach. However, the resulting Karp and Miller procedure only gives a semi-algorithm for HOPVASS. In fact, we show that coverability, termination and boundedness are all undecidable for HOPVASS, even in the restricted subcase of one counter and an order 2 stack. On the bright side, we prove that this semi-algorithm is in fact an algorithm for higher-order pushdown automata.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
IDEAL-BASED ALGORITHMS FOR VASSES AND WELL-STRUCTURED SYSTEMS
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01962407/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01962407/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017